scholarly journals Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury

2014 ◽  
Vol 7 (1) ◽  
Author(s):  
Tao Chen ◽  
Wen Wang ◽  
Yu-Lin Dong ◽  
Ming-Ming Zhang ◽  
Jian Wang ◽  
...  
2008 ◽  
Vol 1238 ◽  
pp. 53-58 ◽  
Author(s):  
Kaori Tachibana ◽  
Rui Kato ◽  
Kenkichi Tsuruga ◽  
Koichi Takita ◽  
Toshikazu Hashimoto ◽  
...  

Author(s):  
Songxue Su ◽  
Mengqi Li ◽  
Di Wu ◽  
Jing Cao ◽  
Xiuhua Ren ◽  
...  

Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.


2022 ◽  
Author(s):  
Qiao-Yun Li ◽  
Pei-Wen Yao ◽  
Jin-Yu Liu ◽  
Yi-Wen Duan ◽  
Shao-Xia Chen ◽  
...  

Abstract Background: Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus results in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. Methods: The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC pyramidal neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling.Results: Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC pyramidal neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. Conclusions: The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain.


2005 ◽  
Vol 94 (3) ◽  
pp. 1805-1813 ◽  
Author(s):  
Long-Jun Wu ◽  
Ming-Gao Zhao ◽  
Hiroki Toyoda ◽  
Shanelle W. Ko ◽  
Min Zhuo

Kainate (KA) receptors are expressed widely in the CNS. However, little is known about their functional characterization, molecular identity, and role in synaptic transmission in the forebrain of adult mice. Patch-clamp recordings in genetically modified mice show that postsynaptic KA receptors contribute to fast synaptic transmission in pyramidal neurons in the anterior cingulate cortex (ACC), a forebrain region critical for higher-order cognitive brain functions such as memory and mental disorders. Single-shock stimulation could induce small KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) in the presence of picrotoxin, d-2-amino-5-phosphono-pentanoic acid, and a selective AMPA receptor antagonist, GYKI 53655. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulation significantly facilitated the KA EPSCs. Genetic deletion of the GluR6 or GluR5 subunit significantly reduced, and GluR5 and 6 double knockout completely abolished, KA EPSCs and KA-activated currents in ACC pyramidal neurons. Our results show that KA receptors contribute to synaptic transmission in adult ACC pyramidal neurons and provide a synaptic basis for the physiology and pathology of KA receptors in ACC-related functions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bastiaan van der Veen ◽  
Sampath K. T. Kapanaiah ◽  
Kasyoka Kilonzo ◽  
Peter Steele-Perkins ◽  
Martin M. Jendryka ◽  
...  

AbstractPathological impulsivity is a debilitating symptom of multiple psychiatric diseases with few effective treatment options. To identify druggable receptors with anti-impulsive action we developed a systematic target discovery approach combining behavioural chemogenetics and gene expression analysis. Spatially restricted inhibition of three subdivisions of the prefrontal cortex of mice revealed that the anterior cingulate cortex (ACC) regulates premature responding, a form of motor impulsivity. Probing three G-protein cascades with designer receptors, we found that the activation of Gi-signalling in layer-5 pyramidal cells (L5-PCs) of the ACC strongly, reproducibly, and selectively decreased challenge-induced impulsivity. Differential gene expression analysis across murine ACC cell-types and 402 GPCRs revealed that - among Gi-coupled receptor-encoding genes - Grm2 is the most selectively expressed in L5-PCs while alternative targets were scarce. Validating our approach, we confirmed that mGluR2 activation reduced premature responding. These results suggest Gi-coupled receptors in ACC L5-PCs as therapeutic targets for impulse control disorders.


Bioengineered ◽  
2022 ◽  
Vol 13 (2) ◽  
pp. 2058-2075
Author(s):  
Yu Zhang ◽  
Shiwei Jiang ◽  
Fei Liao ◽  
Zhifeng Huang ◽  
Xin Yang ◽  
...  

2013 ◽  
Vol 144 (5) ◽  
pp. S-555
Author(s):  
Bidyut K. Medda ◽  
Banani Banerjee ◽  
Jyoti N. Sengupta ◽  
Pradeep Kannampalli ◽  
Soumya Pochiraju ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document