scholarly journals Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Nan Zhang ◽  
Yue Jin ◽  
Qiubo Hu ◽  
Shanshan Cheng ◽  
Chao Wang ◽  
...  
2017 ◽  
Vol 403 ◽  
pp. 305-317 ◽  
Author(s):  
Zhenyu Zhong ◽  
Mengge Huang ◽  
Mengxin Lv ◽  
Yunfeng He ◽  
Changzhu Duan ◽  
...  

2020 ◽  
Author(s):  
Nan Zhang ◽  
Yue Jin ◽  
Qiubo Hu ◽  
Shanshan Cheng ◽  
Chao Wang ◽  
...  

Abstract Background: Increasing researches have demonstrated the critical functions of circular RNAs (circRNAs) in the progression of malignant tumors, including ovarian cancer. In this study, we aim to investigate abnormally expression of hsa_circ_0078607 and the role of hsa_circ_0078607 during ovarian cancer pathogenesis.Methods: RT-PCR were used to detect the expression of circ_0078607 in ovarian cancer tissues. To determine the functional roles of circ_0078607 in ovarian cancer, cell proliferation and cell invasion assays were performed. Bioinformatics and luciferase reporter analysis were used to predict the target of circ_0078607.Results: In the present study, we first found that circ_0078607 was downregulated in ovarian cancer. Forced circ_0078607 expression significantly suppressed proliferation and promotes apoptosis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified that miR-518a-5p as a direct target of circ_0078607, while Fas as a direct target of miR-518a-5p. MiR-518a-5p negatively regulates Fas in ovarian cancer cells, while overexpression of circ_0078607 could increase the expression of Fas inhibited by miR-518a-5p. Furthermore, overexpression of circ_0078607 could inhibit the proliferation and invasion of ovarian cancer cells caused by miR-518a-5p mimic.Conclusion: The results of the present study revealed that circ_0078607 suppresses ovarian cancer progression by sponging oncogenic miR-518a-5p to induce Fas expression, which may provide new therapeutic approach for ovarian cancer.


2018 ◽  
Author(s):  
Marwa Asem ◽  
Allison Young ◽  
Carlysa Oyama ◽  
Rebecca Burkhalter ◽  
Steven Buechler ◽  
...  

2019 ◽  
Vol Volume 12 ◽  
pp. 3869-3879 ◽  
Author(s):  
He Chen ◽  
Min Mao ◽  
Jing Jiang ◽  
Daling Zhu ◽  
Peiling Li

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhendan Zhao ◽  
Zhiling Wang ◽  
Pengling Wang ◽  
Shujie Liu ◽  
Yingwei Li ◽  
...  

Epithelial ovarian cancer (EOC) is the main pathological type of ovarian cancer. In this study, we found that ependymin-related 1 (EPDR1) was remarkably downregulated in EOC tissues, and low EPDR1 expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, metastasis, and poor prognosis. We confirmed that EPDR1 overexpression dramatically suppressed EOC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, EPDR1 inhibited EOC tumorigenesis and progression, at least in part, through the repression of the PI3K (Phosphoinositide 3-kinase)/AKT (AKT Serine/Threonine Kinase 1) signaling pathway. Furthermore, the expression and function of EPDR1 were regulated by miR-429, as demonstrated by luciferase reporter assays and rescue experiments. In conclusion, our study validated that EPDR1, negatively regulated by miR-429, played an important role as a tumor-suppressor gene in EOC development via inhibition of the PI3K/AKT pathway. The miR-429/EPDR1 axis might provide novel therapeutic targets for individualized treatment of EOC patients in the future.


Aging ◽  
2021 ◽  
Author(s):  
Yanlin Cai ◽  
Yi Hu ◽  
Furong Yu ◽  
Wenjuan Tong ◽  
Shufen Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document