scholarly journals Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Carolina Cruz Viggi ◽  
Serena Simonetti ◽  
Enza Palma ◽  
Pamela Pagliaccia ◽  
Camilla Braguglia ◽  
...  
Author(s):  
Gu Shiyan ◽  
Zhang Wenyi ◽  
Xing Huige ◽  
Wang Ruji ◽  
Sun Jiyang ◽  
...  

Abstract The fermentation system with high solid materials for food waste (FW) is uneven in nutrition and easy to produce volatile acid accumulation, which causes the reaction system to acidify and affects the normal operation of fermentation. This study evaluated the effect of the co-substrate percentages (FW:CB = 9:1, FW:CB = 8:2, FW:CB = 7:3) and the initial total solid contents (12%, 15%, 18%) on the co-fermentation acidification performance of FW and cardboard waste (CB). The maximum methane production was obtained when mono-fermenting FW had high solids contents(1.4 L/kg). The methane production increased and then decreased with the increasing percentages of CB. Under the conditions of FW:CB = 8:2, the maximum methane production could reach 3.4 L/kg. The lower methane production (1.8 ∼ 2.5 L/kg) with high percentages of CB (FW:CB = 7:3) was translated into higher yields of caproic acid (up to 26%), which indicated lower percentages of CB had a stabilization effect due to the higher buffering capacities in co-fermentation. As a result, this study demonstrated new possibilities for using CB percentages to control the production of high added-value biogas in dry co-fermentation of FW.


2017 ◽  
Vol 244 ◽  
pp. 996-1005 ◽  
Author(s):  
Dalal E. Algapani ◽  
Jing Wang ◽  
Wei Qiao ◽  
Min Su ◽  
Andrea Goglio ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6216
Author(s):  
Hamideh Darjazi ◽  
Antunes Staffolani ◽  
Leonardo Sbrascini ◽  
Luca Bottoni ◽  
Roberto Tossici ◽  
...  

The reuse and recycling of products, leading to the utilization of wastes as key resources in a closed loop, is a great opportunity for the market in terms of added value and reduced environmental impact. In this context, producing carbonaceous anode materials starting from raw materials derived from food waste appears to be a possible approach to enhance the overall sustainability of the energy storage value chain, including Li-ion (LIBs) and Na-ion batteries (NIBs). In this framework, we show the behavior of anodes for LIBs and NIBs prepared with coffee ground-derived hard carbon as active material, combined with green binders such as Na-carboxymethyl cellulose (CMC), alginate (Alg), or polyacrylic acid (PAA). In order to evaluate the effect of the various binders on the charge/discharge performance, structural and electrochemical investigations are carried out. The electrochemical characterization reveals that the alginate-based anode, used for NIBs, delivers much enhanced charge/discharge performance and capacity retention. On the other hand, the use of the CMC-based electrode as LIBs anode delivers the best performance in terms of discharge capacity, while the PAA-based electrode shows enhanced cycling stability. As a result, the utilization of anode materials derived from an abundant food waste, in synergy with the use of green binders and formulations, appears to be a viable opportunity for the development of efficient and sustainable Li-ion and Na-ion batteries.


Author(s):  
Gamal Hassan ◽  
Mohamed Azab El-Liethy ◽  
Fatma El-Gohary ◽  
Sherien Elagroudy ◽  
Mohamed Abo-Aly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document