scholarly journals Improved spectrophotometric assay for lytic polysaccharide monooxygenase

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Erik Breslmayr ◽  
Sarah Daly ◽  
Alen Požgajčić ◽  
Hucheng Chang ◽  
Tonči Rezić ◽  
...  

Abstract Background The availability of a sensitive and robust activity assay is a prerequisite for efficient enzyme production, purification, and characterization. Here we report on a spectrophotometric assay for lytic polysaccharide monooxygenase (LPMO), which is an advancement of the previously published 2,6-dimethoxyphenol (2,6-DMP)-based LPMO assay. The new assay is based on hydrocoerulignone as substrate and hydrogen peroxide as cosubstrate and aims toward a higher sensitivity at acidic pH and a more reliable detection of LPMO in complex matrices like culture media. Results An LPMO activity assay following the colorimetric oxidation of hydrocoerulignone to coerulignone was developed. This peroxidase activity of LPMO in the presence of hydrogen peroxide can be detected in various buffers between pH 4–8. By reducing the substrate and cosubstrate concentration, the assay has been optimized for minimal autoxidation and enzyme deactivation while maintaining sensitivity. Finally, the optimized and validated LPMO assay was used to follow the recombinant expression of an LPMO in Pichia pastoris and to screen for interfering substances in fermentation media suppressing the assayed reaction. Conclusions The biphenol hydrocoerulignone is a better substrate for LPMO than the monophenol 2,6-DMP, because of a ~ 30 times lower apparent KM value and a 160 mV lower oxidation potential. This greatly increases the measured LPMO activity when using hydrocoerulignone instead of 2,6-DMP under otherwise similar assay conditions. The improved activity allows the adaptation of the LPMO assay toward a higher sensitivity, different buffers and pH values, more stable assay conditions or to overcome low concentrations of inhibiting substances. The developed assay protocol and optimization guidelines increase the adaptability and applicability of the hydrocoerulignone assay for the production, purification, and characterization of LPMOs.

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Breslmayr ◽  
Marija Hanžek ◽  
Aoife Hanrahan ◽  
Christian Leitner ◽  
Roman Kittl ◽  
...  

2019 ◽  
Vol 10 (2) ◽  
pp. 576-586 ◽  
Author(s):  
Octav Caldararu ◽  
Esko Oksanen ◽  
Ulf Ryde ◽  
Erik D. Hedegård

A mechanism for the formation of hydrogen peroxide by lytic polysaccharide monooxygenases (LPMOs) in the absence of substrate is proposed.


2019 ◽  
Vol 10 (35) ◽  
pp. 8262-8263 ◽  
Author(s):  
Octav Caldararu ◽  
Esko Oksanen ◽  
Ulf Ryde ◽  
Erik D. Hedegård

Correction for ‘Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase’ by Octav Caldararu et al., Chem. Sci., 2019, 10, 576–586.


2020 ◽  
Vol 42 (10) ◽  
pp. 1897-1905
Author(s):  
Susanne Fritsche ◽  
Cynthia Hopson ◽  
Jennifer Gorman ◽  
Raphael Gabriel ◽  
Steven W. Singer

FEBS Letters ◽  
2014 ◽  
Vol 588 (18) ◽  
pp. 3435-3440 ◽  
Author(s):  
Jennifer S.M. Loose ◽  
Zarah Forsberg ◽  
Marco W. Fraaije ◽  
Vincent G.H. Eijsink ◽  
Gustav Vaaje-Kolstad

2021 ◽  
Vol 13 (14) ◽  
pp. 1706-1714
Author(s):  
Nianlu Li ◽  
Mingquan Zhu ◽  
Zhenyu Feng ◽  
Wenhui Lu ◽  
Jing Chen ◽  
...  

In this work, cystine–glucose Maillard conjugates were composited with Cu1.8S microspheres (Cu1.8S–cgmc) to achieve higher sensitivity for the colorimetric analysis.


2009 ◽  
Vol 53 (10) ◽  
pp. 1226-1236 ◽  
Author(s):  
Phillip Bellion ◽  
Melanie Olk ◽  
Frank Will ◽  
Helmut Dietrich ◽  
Matthias Baum ◽  
...  

Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 157 ◽  
Author(s):  
Joao Fonseca ◽  
Fereshteh Moradi ◽  
Andrew Valente ◽  
Jeffrey Stuart

Resveratrol is a plant-derived polyphenol that has been widely studied for its putative health promoting effects. Many of those studies have been conducted in cell culture, in supra-physiological levels of oxygen and glucose. Resveratrol interacts with reactive oxygen species (ROS) as an antioxidant or pro-oxidant. Resveratrol affects the expression and activities of ROS-producing enzymes and organelles. It is therefore important to consider how cell culture conditions might determine the effects of resveratrol on cultured cells. We determined the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics in C2C12 mouse myoblasts and PC3 human prostate cancer cells under conditions of physiological (5%) and supra-physiological (18%) oxygen, and normo- (5 mM) and hyper-glycemia (25 mM). Interestingly, most effects of resveratrol on the parameters measured here were dependent upon prevailing oxygen and glucose levels during the experiment. Many of the effects of resveratrol on cell growth, hydrogen peroxide production, and mitochondrial network characteristics that were seen in 25 mM glucose and/or 18% oxygen were absent under the physiologically relevant conditions of 5 mM glucose with 5% oxygen. These findings emphasize the importance of using physiologically meaningful starting conditions for cell-culture experiments with resveratrol and indeed any manipulation affecting ROS metabolism and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document