Carbon–nitrogen conjugate-composited Cu1.8S with enhanced peroxidase-like activity for the colorimetric detection of hydrogen peroxide and glutathione

2021 ◽  
Vol 13 (14) ◽  
pp. 1706-1714
Author(s):  
Nianlu Li ◽  
Mingquan Zhu ◽  
Zhenyu Feng ◽  
Wenhui Lu ◽  
Jing Chen ◽  
...  

In this work, cystine–glucose Maillard conjugates were composited with Cu1.8S microspheres (Cu1.8S–cgmc) to achieve higher sensitivity for the colorimetric analysis.

2011 ◽  
Vol 48 (No. 7) ◽  
pp. 293-297
Author(s):  
V. Hosnedl ◽  
H. Honsová

Barley seed sensitivity to water and anoxia was tested. Standard germination, mean time of germination (MTG), germination in sand wetted by water to 100% water capacity (anoxia) or by hydrogen peroxide (wet conditions without anoxia), germination in 0.75% hydrogen peroxide and laboratory emergence (15 and 20&deg;C) were evaluated. Barley seed responds sensitively to stress conditions during germination. Significant germination decrease was found in abundance of water. Percentage of reduction depends on the variety and on the year of seed production. Extreme values of water sensitivity are in interval 4&ndash;90%. At wetted sand by 0.75%, solution of H<sub>2</sub>O<sub>2</sub> the germination was significantly less reduced. That means that barley seed is very sensitive to oxygen deficiency above all and is less injured by quick imbibition. Heterogeneity in seed vigour was demonstrated in laboratory emergence tests. Quick test of germination in 0.75% hydrogen peroxide deserves attention for its high correlation coefficient with the seed laboratory emergence. The results significantly demonstrate a&nbsp;higher sensitivity of deteriorated seed to germination in abiotic stresses conditions. Variability in speed of germination is increasing, which unfavourably extends the mean time of germination.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4977 ◽  
Author(s):  
Hong Dinh Duong ◽  
Jong Il Rhee

In this study, carboxyl group functionalized-CdSe/ZnS quantum dots (QDs) and aminofluorescein (AF)-encapsulated polymer particles were synthesized and immobilized to a sol–gel mixture of glycidoxypropyl trimethoxysilane (GPTMS) and aminopropyl trimethoxysilane (APTMS) for the fabrication of a hydrogen peroxide-sensing membrane. CdSe/ZnS QDs were used for the redox reaction of hydrogen peroxide (H2O2) via a reductive pathway by transferring electrons to the acceptor that led to fluorescence quenching of QDs, while AF was used as a reference dye. Herein, the ratiometric fluorescence intensity of CdSe/ZnS QDs and AF was proportional to the concentration of hydrogen peroxide. The fluorescence membrane (i.e., QD–AF membrane) could detect hydrogen peroxide in linear detection ranges from 0.1 to 1.0 mM with a detection limit (LOD) of 0.016 mM and from 1.0 to 10 mM with an LOD of 0.058 mM. The sensitivity of the QD–AF membrane was increased by immobilizing horseradish peroxidase (HRP) over the surface of the QD–AF membrane (i.e., HRP–QD–AF membrane). The HRP–QD–AF membrane had an LOD of 0.011 mM for 0.1–1 mM H2O2 and an LOD of 0.068 mM for 1–10 mM H2O2. It showed higher sensitivity than the QD–AF membrane only, although both membranes had good selectivity. The HRP–QD–AF membrane could be applied to determine the concentration of hydrogen peroxide in wastewater, while the QD–AF membrane could be employed for the detection of α-ketobutyrate.


2016 ◽  
Vol 8 (36) ◽  
pp. 6625-6630 ◽  
Author(s):  
Lili Zhao ◽  
Julia Wiebe ◽  
Rabia Zahoor ◽  
Sladjana Slavkovic ◽  
Brian Malile ◽  
...  

The sensitivity of the formation of plasmonic silver nanoprisms to hydrogen peroxide is explored for the colorimetric detection of catalase activity in bacteria.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 935-943 ◽  
Author(s):  
Yan Gao ◽  
Chunqiao Jin ◽  
Miaomiao Chen ◽  
Xixi Zhu ◽  
Min Fu ◽  
...  

Hydrogen peroxide detection has been widely applied in the fields of biology, medicine, and chemistry. Colorimetric detection of hydrogen peroxide has proven to be a fast and convenient method. In this work, 5,10,15,20-tetrakis(4-chlorophenyl) porphyrin modified Co[Formula: see text]S[Formula: see text] nanocomposites (H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] were prepared via a facile one-step hydrothermal method. H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] nanocomposites were demonstrated to possess an enhanced mimetic peroxidase activity toward the substrate, 3,3[Formula: see text],5,5[Formula: see text]-tetramethylbenzidine (TMB), which can be oxidized to oxTMB (oxidized TMB) in a buffer solution of hydrogen peroxide with a color change from colorless to blue. The catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] was further analyzed by steady-state kinetics, and H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] had high affinity towards both TMB and H[Formula: see text]O[Formula: see text]. Furthermore, fluorescence and ESR data revealed that the catalytic mechanism of the peroxidase activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text] is due to hydroxyl radicals generated from decomposition of H[Formula: see text]O[Formula: see text]. Based on the catalytic activity of H[Formula: see text]TClPP-Co[Formula: see text]S[Formula: see text], a sensitive colorimetric sensor of H[Formula: see text]O[Formula: see text] with a detection limit of 6.803 [Formula: see text]M as well as a range of 7–100 [Formula: see text]M was designed.


2020 ◽  
Vol 1219 ◽  
pp. 128620
Author(s):  
Faiza Zarif ◽  
Sajid Rauf ◽  
Shazia Khurshid ◽  
Nawshad Muhammad ◽  
Akhtar Hayat ◽  
...  

2019 ◽  
Vol 7 (16) ◽  
pp. 2608-2612 ◽  
Author(s):  
Xiaoyi Ma ◽  
Peng Miao

DNA tetrahedron-modified silver nanoparticles were constructed for the colorimetric analysis of HIV-related DNA with strand displacement polymerization and nicking endonuclease-aided cycles.


2019 ◽  
Vol 7 (40) ◽  
pp. 6232-6237 ◽  
Author(s):  
Yue Sun ◽  
Hai Xu ◽  
Xi Zhao ◽  
Zengyu Hui ◽  
Chenyang Yu ◽  
...  

Ultra-thin NiCo LDH was synthesized as a nanozyme for sensitive colorimetric detection of H2O2 and its active site was identified.


Sign in / Sign up

Export Citation Format

Share Document