scholarly journals Indoor cycling training in rehabilitation of patients after myocardial infarction

Author(s):  
Dagmara Gloc ◽  
Zbigniew Nowak ◽  
Agata Nowak-Lis ◽  
Tomasz Gabryś ◽  
Urszula Szmatlan-Gabrys ◽  
...  

Abstract Background Standard endurance training used from the second stage of cardiac rehabilitation has many common features with indoor cycling training which is used in fitness clubs. In the study, an attempt was made to evaluate the usefulness of this form of training in a 24-day rehabilitation program for patients after myocardial infarction. The study examined a group of 64 patients (51.34 ± 8.02 years) who were divided into two groups: the IC group (32 patients aged 53.40 ± 4.31 years) with indoor cycling training instead of standard endurance training; and the ST group (32 patients aged 55.31 ± 6.45 years) performing standard training. The level of exercise tolerance (cardiopulmonary exercise testing on a treadmill—Bruce’s protocol), hemodynamic indicators of the left ventricle (echocardiography) and blood lipid profile (laboratory test) were assessed. Results In the IC group there was a significant increase in the test duration (9.21 ± 2.02 vs 11.24 ± 1.26 min; p < 0.001), the MET value (9.16 ± 1.30 vs 10.73 ± 1.23; p = 0.006) and VO2max (37.27 ± 3.23 vs 39.10 ± 3.17 ml/kg/min; p < 0.001). Parallel changes were observed in the ST group, where the following parameters improved: the test duration (9.41 ± 0.39 vs 10.91 ± 2.22; p < 0.001), MET value (8.65 ± 0.25 vs 9.86 ± 1.12; p = 0.002) and VO2max (36.89 ± 6.22 vs 38.76 ± 3.44; p < 0.001). No statistically significant changes were found in the hemodynamic indices of the left ventricle and the lipid profile. Also, the intergroup analysis did not show any statistical significance. Conclusion Based on the research results, it was found that indoor cycling training in the second phase of cardiac rehabilitation is a safe form of therapy and therefore may be an interesting alternative method to the classic bicycle ergometer exercise in the stage of early cardiac rehabilitation.

2021 ◽  
Author(s):  
Dagmara Gloc ◽  
Zbigniew Nowak ◽  
Agata Nowak- Lis ◽  
Tomasz Gabryś ◽  
Urszula Szmatlan-Gabrys ◽  
...  

Abstract Background Standard endurance training used from the second stage of cardiac rehabilitation has many common features with indoor cycling training which is used in fitness clubs. In the study, an attempt was made to evaluate the usefulness of this form of training in a 24-day rehabilitation program for patients after myocardial infarction. The study examined a group of 64 patients (51.34 ± 8.02 years) who were divided into two groups: the IC group (32 patients aged 53.40 ± 4.31 years) with indoor cycling training instead of standard endurance training; and the ST group (32 patients aged 55.31 ± 6.45 years) performing standard training. The level of exercise tolerance (cardiopulmonary exercise testing on a treadmill – Bruce's protocol), hemodynamic indicators of the left ventricle (echocardiography) and blood lipid profile (laboratory test) were assessed.Results In the IC group there was a significant increase in the test duration (9.21 ± 2.02 vs 11.24 ± 1.26 min; p < 0.001), the MET value (9.16 ± 1.30 vs 10.73 ± 1.23; p = 0.006) and VO2max (37.27 ± 3.23 vs 39.10 ± 3.17 ml/kg/min; p < 0.001). Parallel changes were observed in the ST group, where the following parameters improved: the test duration (9.41 ± 0.39 vs 10.91 ± 2.22; p < 0.001), MET value (8.65 ± 0.25 vs 9.86 ± 1.12; p = 0.002) and VO2max (36.89 ± 6.22 vs 38.76 ± 3.44; p < 0.001). No statistically significant changes were found in the hemodynamic indices of the left ventricle and the lipid profile. Also, the intergroup analysis did not show any statistical significance.Conclusion Based on the research results, it was found that indoor cycling training in the second phase of cardiac rehabilitation is a safe form of therapy and therefore may be an interesting alternative method to the classic bicycle ergometer exercise in the stage of early cardiac rehabilitation.


Author(s):  
Agata Nowak-Lis ◽  
Tomasz Gabryś ◽  
Zbigniew Nowak ◽  
Paweł Jastrzębski ◽  
Urszula Szmatlan-Gabryś ◽  
...  

The presence of a well-developed collateral circulation in the area of the artery responsible for the infarction improves the prognosis of patients and leads to a smaller area of infarction. One of the factors influencing the formation of collateral circulation is hypoxia, which induces angiogenesis and arteriogenesis, which in turn cause the formation of new vessels. The aim of this study was to assess the effect of endurance training conducted under normobaric hypoxia in patients after myocardial infarction at the level of exercise tolerance and hemodynamic parameters of the left ventricle. Thirty-five patients aged 43–74 (60.48 ± 4.36) years who underwent angioplasty with stent implantation were examined. The program included 21 training units lasting about 90 min. A statistically significant improvement in exercise tolerance assessed with the cardiopulmonary exercise test (CPET) was observed: test duration (p < 0.001), distance covered (p < 0.001), HRmax (p = 0.039), maximal systolic blood pressure (SBPmax) (p = 0.044), peak minute ventilation (VE) (p = 0.004) and breathing frequency (BF) (p = 0.044). Favorable changes in left ventricular hemodynamic parameters were found for left ventricular end-diastolic dimension LVEDD (p = 0.002), left ventricular end-systolic dimension LVESD (p = 0.015), left ventricular ejection fraction (LVEF) (p = 0.021), lateral e’ (p < 0.001), septal e’ (p = 0.001), and E/A (p = 0.047). Endurance training conducted in hypoxic conditions has a positive effect on exercise tolerance and the hemodynamic indicators of the left ventricle.


2021 ◽  
Vol 20 (Supplement_1) ◽  
Author(s):  
HR Rodrigues ◽  
V Ferreira ◽  
L Alves ◽  
D Sousa ◽  
J Pinto ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public hospital(s). Main funding source(s): Centro Hospitalar Universitário Lisboa Central Methods We studied 30 patients (P) with ejection fraction (EF) 40-50%, in a number of 198 P that participated in cardiac rehabilitation program (CRP). Of these P, 24 (80%) male and 6 (20%) female, 20 P were diagnosed myocardial infarction with ST-segment elevation, 2 P myocardial infarction non ST and 8 P with myocardial hypertrophy non ischemic. Of these P 30% were diabetics, 56% hypertension, 70% dyslipidemia, 36% smokers previous to CRP and body mass index 26,3 medium. All P were submitted to previous echocardiogram, cardiopulmonary exercise testing (CET) and a rehabilitation program minimum 4 sessions and maximum 52 sessions. At the end of the total sessions the echocardiogram and CET were repeated. Results Of the 30 P that participated in CRP only 20 completed the program, while the other 10 P dropped out because of social and economic problems. Of the P that completed the CRP, 70% got better on EF, 80% improved VE/VCO2 slope &lt; 33 therefore are classified VC-II in ventilatory classification (VC), 5% VE/VCO2 slope &gt; 40  VC-III classification, and 15% maintained the initial classification.  50% of the P increased at least one level metabolic equivalent of task (MET) from the first CET. Only 3 of the 20 patients came, once, to the hospital after the CRP with heart failure, and one died but did not fulfill the program. Conclusion Patients with mid-range heart failure submitted to a CRP can improve cardiorespiratory predictors, leading to a better quality of life. However, it is important to find solutions to minimize the causes that make patients to give up CRP.


2021 ◽  
Vol 10 (18) ◽  
pp. 4083
Author(s):  
Krzysztof Smarz ◽  
Tomasz Jaxa-Chamiec ◽  
Beata Zaborska ◽  
Maciej Tysarowski ◽  
Andrzej Budaj

Cardiac rehabilitation (CR) is indicated in all patients after acute myocardial infarction (AMI) to improve prognosis and exercise capacity (EC). Previous studies reported that up to a third of patients did not improve their EC after CR (non-responders). Our aim was to assess the cardiac and peripheral mechanisms of EC improvement after CR using combined exercise echocardiography and cardiopulmonary exercise testing (CPET-SE). The responders included patients with an improved EC assessed as a rise in peak oxygen uptake (VO2) ≥ 1 mL/kg/min. Peripheral oxygen extraction was calculated as arteriovenous oxygen difference (A-VO2Diff). Out of 41 patients (67% male, mean age 57.5 ± 10 years) after AMI with left ventricular ejection fraction (LVEF) ≥ 40%, 73% improved their EC. In responders, peak VO2 improved by 27% from 17.9 ± 5.2 mL/kg/min to 22.7 ± 5.1 mL/kg/min, p < 0.001, while non-responders had a non-significant 5% decrease in peak VO2. In the responder group, the peak exercise heart rate, early diastolic myocardial velocity at peak exercise, LVEF at rest and at peak exercise, and A-VO2Diff at peak exercise increased, the minute ventilation to carbon dioxide production slope decreased, but the stroke volume and cardiac index were unchanged after CR. Non-responders had no changes in assessed parameters. EC improvement after CR of patients with preserved LVEF after AMI is associated with an increased heart rate response and better peripheral oxygen extraction during exercise.


2021 ◽  
Vol 10 (11) ◽  
pp. 2253
Author(s):  
Agnieszka Grochulska ◽  
Sebastian Glowinski ◽  
Aleksandra Bryndal

(1) Background: Cardiovascular diseases, in particular, myocardial infarction (MI), are the main threats to human health in modern times. Cardiac rehabilitation (CR), and especially increased physical activity, significantly prevent the consequences of MI. The aim of this study was to assess physical performance in patients after MI before and after CR. (2) Methods: 126 patients after MI were examined. They were admitted to the cardiac rehabilitation ward twice: in the 3rd month after MI, and then in the 6th month after the last rehabilitation session. CR lasted 20 treatment days (4 weeks with 5 treatment days and 2 days’ break). The exercise stress test on the treadmill and a 6-minute walk test (6MWT) were used to assess physical performance. Patients were assigned to an appropriate rehabilitation model due to their health condition. (3) Results: In the studied group, the exercise stress test time and the metabolic equivalent of task (MET), the maximal oxygen consumption (VO2max), and 6MWT score increased significantly (p = 0.0001) at two time-points of observation. (4) Conclusion: CR significantly improves physical performance in patients after MI.


Sign in / Sign up

Export Citation Format

Share Document