scholarly journals In-silico analysis reveals druggable single nucleotide polymorphisms in angiotensin 1 converting enzyme involved in the onset of blood pressure

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Brenda Udosen ◽  
Opeyemi Soremekun ◽  
Chinwe Ekenna ◽  
Olaposi Idowu Omotuyi ◽  
Tinashe Chikowore ◽  
...  

Abstract Objective The Angiotensin 1 converting enzyme (ACE1) gene plays a critical role in regulating blood pressure and thus, it has become a major therapeutic target of antihypertensives. Single nucleotide polymorphisms (SNPs) occurring within a gene most especially at the functional segment of the genes alter the structure–function relationship of that gene. Results Our study revealed that five nsSNPs of the ACE1 gene were found to be potentially deleterious and damaging and they include rs2229839, rs14507892, rs12709442, and rs4977 at point mutations P351R, R953Q, I1018T, F1051V, and T1187M. The protein stability predictive tools revealed that all the nsSNPs decreased stability of the protein and the Consurf server which estimates the evolutionary conservation profile of a protein showed that three mutants were in the highly conserved region. In conclusion, this study predicted potential druggable deleterious mutants that can be further explored to understand the pathological basis of cardiovascular disease.

2020 ◽  
Vol 24 (7) ◽  
pp. 420-424
Author(s):  
Anahí González-Mercado ◽  
María Teresa Magaña-Torres ◽  
Josefina Yoaly Sánchez-López ◽  
Mónica Ríos-Silva ◽  
Bertha Ibarra-Cortés ◽  
...  

2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


1996 ◽  
Vol 42 (9) ◽  
pp. 1391-1397 ◽  
Author(s):  
T Pastinen ◽  
J Partanen ◽  
A C Syvänen

Abstract We developed a multiplex, solid-phase minisequencing method to detect multiple single-nucleotide polymorphisms in an undivided sample. The amplified DNA templates are first captured on a manifold. Then, with multiple minisequencing primers of various sizes, single-nucleotide extension reactions are carried out simultaneously with fluorescently labeled dideoxynucleotides. The size of the extended product, determined by using a DNA sequencing instrument, defines the site of the polymorphisms, and the incorporated nucleotide gives the identity of the nucleotide at each site. HLA-DQA1 typing was used as a model system to evaluate the method. The DR2 subgroup of the HLA-DRB1 gene was typed along with the DQA1 gene to demonstrate the feasibility of the method in analyzing multiple genes at multiple sites simultaneously. The method is generally applicable for screening any single-nucleotide polymorphisms or point mutations, and its manifold format allows practical handling of large numbers of samples.


2018 ◽  
Author(s):  
Md. Arifuzzaman ◽  
Sarmistha Mitra ◽  
Amir Hamza ◽  
Raju Das ◽  
Nurul Absar ◽  
...  

ABSTRACTBackgroundMutations in SMPX gene can disrupt the normal activity of the SMPX protein which is involved in hearing process.ObjectiveIn this study, deleterious non-synonymous single nucleotide polymorphisms were isolated from the neutral variants by using several bioinformatics tools.MethodFirstly, dbSNP database hosted by NCBI was used to retrieve the SNPs of SMPX gene, secondly, SIFT was used primarily to screen the damaging SNPs. Further, for validation PROVEAN, PredictSNP and PolyPhen 2 were used. I-Mutant 3 was utilized to analyze the protein stability change and MutPred predicted the molecular mechanism of protein stability change. Finally evolutionary conservation was done to study their conservancy by using ConSurf server.ResultsA total of 26 missense (0.6517%) and 3 nonsense variants (0.075%) were retrieved and among them 4 mutations were found deleterious by all the tools of this experiment and are also highly conserved according to ConSurf server. rs772775896, rs759552778, rs200892029 and rs1016314772 are the reference IDs of deleterious mutations where the substitutions are S71L, N19D, A29T and K54N. Loss of Ubiquitination, loss of methylation, loss of glycosylation, and loss of MoRF binding motifs are the root causes of protein stability change.ConclusionThis is the first study regarding nsSNPs of SMPX gene where the most damaging SNPs were screened that are associated with the SMPX gene and can be used for further research to study their effect on protein structure and function, their dynamic behavior and how they actually affect protein’s flexibility.


Sign in / Sign up

Export Citation Format

Share Document