scholarly journals Discordant amyloid-β PET and CSF biomarkers and its clinical consequences

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Arno de Wilde ◽  
Juhan Reimand ◽  
Charlotte E. Teunissen ◽  
Marissa Zwan ◽  
Albert D. Windhorst ◽  
...  

Abstract Background In vivo, high cerebral amyloid-β load has been associated with (i) reduced concentrations of Aβ42 in cerebrospinal fluid and (ii) increased retention using amyloid-β positron emission tomography. Although these two amyloid-β biomarkers generally show good correspondence, ~ 10–20% of cases have discordant results. To assess the consequences of having discordant amyloid-β PET and CSF biomarkers on clinical features, biomarkers, and longitudinal cognitive trajectories. Methods We included 768 patients (194 with subjective cognitive decline (SCD), 127 mild cognitive impairment (MCI), 309 Alzheimer’s dementia (AD), and 138 non-AD) who were categorized as concordant-negative (n = 315, 41%), discordant (n = 97, 13%), or concordant-positive (n = 356, 46%) based on CSF and PET results. We compared discordant with both concordant-negative and concordant-positive groups on demographics, clinical syndrome, apolipoprotein E (APOE) ε4 status, CSF tau, and clinical and neuropsychological progression. Results We found an increase from concordant-negative to discordant to concordant-positive in rates of APOE ε4 (28%, 55%, 70%, Z = − 10.6, P < 0.001), CSF total tau (25%, 45%, 78%, Z = − 13.7, P < 0.001), and phosphorylated tau (28%, 43%, 80%, Z = − 13.7, P < 0.001) positivity. In patients without dementia, linear mixed models showed that Mini-Mental State Examination and memory composite scores did not differ between concordant-negative (β [SE] − 0.13[0.08], P = 0.09) and discordant (β 0.08[0.15], P = 0.15) patients (Pinteraction = 0.19), while these scores declined in concordant-positive (β − 0.75[0.08] patients (Pinteraction < 0.001). In patients with dementia, longitudinal cognitive scores were not affected by amyloid-β biomarker concordance or discordance. Clinical progression rates from SCD to MCI or dementia (P = 0.01) and from MCI to dementia (P = 0.003) increased from concordant-negative to discordant to concordant-positive. Conclusions Discordant cases were intermediate to concordant-negative and concordant-positive patients in terms of genetic (APOE ε4) and CSF (tau) markers of AD. While biomarker agreement did not impact cognition in patients with dementia, discordant biomarkers are not benign in patients without dementia given their higher risk of clinical progression.

2019 ◽  
Vol 19 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Timo Grimmer ◽  
Oliver Goldhardt ◽  
Igor Yakushev ◽  
Marion Ortner ◽  
Christian Sorg ◽  
...  

Background: Neprilysin (NEP) cleaves amyloid-β 1–42 (Aβ42) in the brain. Hence, we aimed to elucidate the effect of NEP on Aβ42 in cerebrospinal fluid (CSF) and on in vivo brain amyloid load using amyloid positron emission tomography (PET) with [11C]PiB (Pittsburgh compound B). In addition, associations with the biomarkers for neuronal injury, CSF-tau and FDG-PET, were investigated. Methods: Associations were calculated using global and voxel-based (SPM8) linear regression analyses in the same cohort of 23 highly characterized Alzheimer’s disease patients. Results: CSF-NEP was significantly inversely associated with CSF-Aβ42 and positively with the extent of neuronal injury as measured by CSF-tau and FDG-PET. Conclusions: Our results on CSF-NEP are compatible with the assumption that local degradation, amongst other mechanisms of amyloid clearance, plays a role in the development of Alzheimer’s pathology. In addition, CSF-NEP is associated with the extent and the rate of neurodegeneration.


2018 ◽  
Vol 14 (11) ◽  
pp. 1470-1481 ◽  
Author(s):  
Oskar Hansson ◽  
John Seibyl ◽  
Erik Stomrud ◽  
Henrik Zetterberg ◽  
John Q. Trojanowski ◽  
...  

2012 ◽  
Vol 19 (5) ◽  
pp. 543-552 ◽  
Author(s):  
Kristin Augutis ◽  
Markus Axelsson ◽  
Erik Portelius ◽  
Gunnar Brinkmalm ◽  
Ulf Andreasson ◽  
...  

Background: Amyloid precursor protein (APP) and amyloid β (Aβ) peptides are intensely studied in neuroscience and their cerebrospinal fluid (CSF) measurements may be used to track the metabolic pathways of APP in vivo. Reduced CSF levels of Aβ and soluble APP (sAPP) fragments are reported in inflammatory diseases, including multiple sclerosis (MS); but in MS, the precise pathway of APP metabolism and whether it can be affected by disease-modifying treatments remains unclear. Objective: To characterize the CSF biomarkers of APP degradation in MS, including the effects of disease-modifying therapy. Methods: CSF samples from 87 MS patients (54 relapsing–remitting (RR) MS; 33 secondary progressive (SP) MS and 28 controls were analyzed for sAPP and Aβ peptides by immunoassays, plus a subset of samples was analyzed by immunoprecipitation and mass spectrometry (IP-MS). Patients treated with natalizumab or mitoxantrone were examined at baseline, and after 1–2 years of treatment. Results: CSF sAPP and Aβ peptide levels were reduced in MS patients; but they increased again towards normal, after natalizumab treatment. A multivariate model of IP-MS-measured Aβ species separated the SPMS patients from controls, with RRMS patients having intermediate levels. Conclusions: We confirmed and extended our previous observations of altered CSF sAPP and Aβ peptide levels in MS patients. We found that natalizumab therapy may be able to counteract the altered APP metabolism in MS. The CSF Aβ isoform distribution was found to be distinct in SPMS patients, as compared to the controls.


1992 ◽  
Vol 12 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Ferruccio Fazio ◽  
Daniela Perani ◽  
Maria Carla Gilardi ◽  
Fabio Colombo ◽  
Stefano F. Cappa ◽  
...  

Human amnesia is a clinical syndrome exhibiting the failure to recall past events and to learn new information. Its “pure” form, characterized by a selective impairment of long-term memory without any disorder of general intelligence or other cognitive functions, has been associated with lesions localized within Papez's circuit and some connected areas. Thus, amnesia could be due to a functional disconnection between components of this or other neural structures involved in long-term learning and retention. To test this hypothesis, we measured regional cerebral metabolism with 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and positron emission tomography (PET) in 11 patients with “pure” amnesia. A significant bilateral reduction in metabolism in a number of interconnected cerebral regions (hippocampal formation, thalamus, cingulate gyrus, and frontal basal cortex) was found in the amnesic patients in comparison with normal controls. The metabolic impairment did not correspond to alterations in structural anatomy as assessed by magnetic resonance imaging (MRI). These results are the first in vivo evidence for the role of a functional network as a basis of human memory.


2009 ◽  
Vol 30 (2) ◽  
pp. 381-389 ◽  
Author(s):  
Jurgen EM Mourik ◽  
Mark Lubberink ◽  
Floris HP van Velden ◽  
Reina W Kloet ◽  
Bart NM van Berckel ◽  
...  

The aim of this study was to validate in vivo the accuracy of a reconstruction-based partial volume correction (PVC), which takes into account the point spread function of the imaging system. The NEMA NU2 Image Quality phantom and five healthy volunteers (using [11C]flumazenil) were scanned on both HR+ and high-resolution research tomograph (HRRT) scanners. HR+ data were reconstructed using normalization and attenuation-weighted ordered subsets expectation maximization (NAW-OSEM) and a PVC algorithm (PVC-NAW-OSEM). HRRT data were reconstructed using 3D ordinary Poisson OSEM (OP-OSEM) and a PVC algorithm (PVC-OP-OSEM). For clinical studies, parametric volume of distribution ( VT) images were generated. For phantom data, good recovery was found for both OP-OSEM (0.84 to 0.97) and PVC-OP-OSEM (0.91 to 0.98) HRRT reconstructions. In addition, for the HR+, good recovery was found for PVC-NAW-OSEM (0.84 to 0.94), corresponding well with OP-OSEM. Finally, for clinical data, good correspondence was found between PVC-NAW-OSEM and OP-OSEM-derived VT values (slope: 1.02±0.08). This study showed that HR+ image resolution using PVC-NAW-OSEM was comparable to that of the HRRT scanner. As the HRRT has a higher intrinsic resolution, this agreement validates reconstruction-based PVC as a means of improving the spatial resolution of the HR+ scanner and thereby improving the quantitative accuracy of positron emission tomography.


2020 ◽  
Author(s):  
Juhan Reimand ◽  
Baayla D.C. Boon ◽  
Lyduine E. Collij ◽  
Charlotte E. Teunissen ◽  
Annemieke J.M. Rozemuller ◽  
...  

AbstractObjectiveAccumulation of amyloid-β is among the earliest changes in Alzheimer’s disease (AD). Amyloid-β positron emission tomography (PET) and Aβ42 in cerebrospinal fluid (CSF) both assess amyloid-β pathology in-vivo, but 10–20% of cases show discordant (CSF+/PET- or CSF-/PET+) results. The neuropathological correspondence with amyloid-β CSF/PET discordance is unknown.MethodsWe included 21 patients from our tertiary memory clinic who had undergone both CSF Aβ42 analysis and amyloid-β PET, and had neuropathological data available. Amyloid-β PET and CSF results were compared with neuropathological ABC scores (comprising of Thal (A), Braak (B) and CERAD (C) stage, all ranging from 0 [low] to 3 [high]) and neuropathological diagnosis.ResultsNeuropathological diagnosis was AD in 11 (52%) patients. Amyloid-β PET was positive in all A3, C2 and C3 cases and in one of the two A2 cases. CSF Aβ42 was positive in 92% of A2/A3 and 90% of C2/C3 cases. PET and CSF were discordant in 3/21 (14%) cases: CSF+/PET- in a patient with granulomatosis with polyangiitis (A0B0C0), CSF+/PET- in a patient with FTLD-TDP type B (A2B1C1), and CSF-/PET+ in a patient with AD (A3B3C3). Two CSF+/PET+ cases had a non-AD neuropathological diagnosis, i.e. FTLD-TDP type E (A3B1C1) and adult-onset leukoencephalopathy with axonal spheroids (A1B1C0).InterpretationOur findings confirm amyloid-β CSF/PET discordance with a range of possible reasons. Furthermore, amyloid-β biomarker positivity on both PET and CSF did not invariably result in an AD diagnosis at autopsy, illustrating the importance of considering relevant co-morbidities when evaluating amyloid-β biomarker results.


2021 ◽  
Vol 39 (3) ◽  
pp. 214-218
Author(s):  
Min Hye Kim ◽  
Joonho Lee ◽  
Hong Nam Kim ◽  
In Ja Shin ◽  
Keun Lee ◽  
...  

We report a 61-year-old woman with clinical course for Alzheimer’s disease (AD) dementia and discordant amyloid-β positron-emission tomography (PET) and cerebrospinal fluid biomarkers. Brain magnetic resonance imaging revealed remarkable atrophy in the hippocampus. However, repeated delayed <sup>18</sup>F-flutemetamol brain amyloid PET images with 1 year-interval revealed no amyloid deposition, whereas her CSF revealed low Aβ42, high total tau and p-tau181. This discordant amyloid-β PET and CSF biomarkers in this early-onset AD dementia might be associated with her low resilience or mixed pathology.


2021 ◽  
pp. 1-14
Author(s):  
Christiana Bjorkli ◽  
Claire Louet ◽  
Trude Helen Flo ◽  
Mary Hemler ◽  
Axel Sandvig ◽  
...  

Background: Preclinical models of Alzheimer’s disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. Objective: An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. Methods: Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. Results: We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. Conclusion: Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).


2020 ◽  
Author(s):  
Leon M Aksman ◽  
Neil P Oxtoby ◽  
Marzia A Scelsi ◽  
Peter A Wijeratne ◽  
Alexandra L Young ◽  
...  

Alzheimer's disease (AD) is marked by the spread of misfolded amyloid-β and tau proteins throughout the brain. While it is commonly believed that amyloid-β abnormality drives the cascade of AD pathogenesis, several in vivo and post mortem studies indicate that in some subjects localized tau-based neurofibrillary tangles precede amyloid-β pathology. This suggests that there may be multiple distinct subtypes of protein aggregation pathways within AD, with potentially different demographic, cognitive and comorbidity profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post mortem immunohistochemistry and in vivo positron emission tomography (PET) and cerebrospinal fluid (CSF) based measures of protein pathologies in two large observational cohorts. We consistently identified both amyloid-first and tau-first AD subtypes, where tau-first subjects had higher levels of soluble TREM2 compared to amyloid-first subjects. Our work provides insight into AD progression that may be valuable for interventional trials targeting amyloid-β and tau.


2020 ◽  
Author(s):  
Anusha Rangarajan ◽  
Minjie Wu ◽  
Naomi Joseph ◽  
Helmet T. Karim ◽  
Charles Laymon ◽  
...  

AbstractAlzheimer’s disease (AD) is the most common cause of dementia and identifying early markers of this disease is important for prevention and treatment strategies. Amyloid - β protein deposition is one of the earliest detectable pathological changes in AD. But in-vivo detection of amyloid - β using positron emission tomography (PET) is hampered by high cost and limited geographical accessibility. These factors can become limiting when PET is used to screen large numbers of subjects into prevention trials when only a minority are expected to be amyloid- β - positive. Structural MRI is advantageous; as it is relatively inexpensive and more accessible. Thus it could be widely used in large studies, even when frequent or repetitive imaging is necessary. We used a machine learning, pattern recognition, approach using intensity-based features from individual and combination of MR modalities (T1 weighted, T2 weighted, T2 fluid attenuated inversion recovery [FLAIR], susceptibility weighted imaging) to predict voxel-level amyloid- β in the brain. The MR- amyloid β relation was learned within each subject and generalized across subjects using subject–specific features (demographic, clinical, and summary MR features). When compared to other modalities, combination of T1-weighted, T2-weighted FLAIR, and SWI performed best in predicting the amyloid- β status as positive or negative. T2- weighted performed the best in predicting change in amyloid- β over two timepoints. Overall, our results show feasibility of amyloid- β prediction by MRI.


Sign in / Sign up

Export Citation Format

Share Document