scholarly journals Deep learning approach for automatic segmentation of ulna and radius in dual-energy X-ray imaging

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Yang ◽  
Xin Weng ◽  
Yuehong Miao ◽  
Yuhui Wu ◽  
Hong Xie ◽  
...  

Abstract Background Segmentation of the ulna and radius is a crucial step for the measurement of bone mineral density (BMD) in dual-energy X-ray imaging in patients suspected of having osteoporosis. Purpose This work aimed to propose a deep learning approach for the accurate automatic segmentation of the ulna and radius in dual-energy X-ray imaging. Methods and materials We developed a deep learning model with residual block (Resblock) for the segmentation of the ulna and radius. Three hundred and sixty subjects were included in the study, and five-fold cross-validation was used to evaluate the performance of the proposed network. The Dice coefficient and Jaccard index were calculated to evaluate the results of segmentation in this study. Results The proposed network model had a better segmentation performance than the previous deep learning-based methods with respect to the automatic segmentation of the ulna and radius. The evaluation results suggested that the average Dice coefficients of the ulna and radius were 0.9835 and 0.9874, with average Jaccard indexes of 0.9680 and 0.9751, respectively. Conclusion The deep learning-based method developed in this study improved the segmentation performance of the ulna and radius in dual-energy X-ray imaging.

Author(s):  
YULI SUN HARIYANI ◽  
SUGONDO HADIYOSO ◽  
THOMHERT SUPRAPTO SIADARI

ABSTRAKPenyakit Coronavirus-2019 atau Covid-19 telah menjadi pandemi global dan menjadi masalah utama yang harus segera dikendalikan. Salah satu cara yang dapat dilakukan adalah memutus rantai penyebaran virus tersebut dengan melakukan deteksi dan melalukan karantina. Pencitraan X-Ray dapat dijadikan alternatif dalam mempelajari Covid-19. X-Ray dianggap mampu menggambarkan kondisi paru-paru pada pasien Covid-19 dan dapat menjadi alat bantu diagnosa klinis. Pada penelitian ini, kami mengusulkan pendekatan deep learning berbasis residual deep network untuk deteksi Covid-19 melalui citra chest X-Ray. Evaluasi yang dilakukan untuk mengetahui performa metode yang diusulkan berupa precision, recall, F1, dan accuracy. Hasil eksperimen menunjukkan bahwa usulan metode ini memberikan precision, recall, F1 dan accuracy masing-masing 0,98, 0,95, 0,97 dan 99%. Pada masa mendatang, studi ini diharapkan dapat divalidasi dan kemudian digunakan untuk melengkapi diagnosa klinis oleh dokter.Kata kunci: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network ABSTRACTCoronavirus-2019 or Covid-19 disease has become a global pandemic and is a major problem that must be stopped immediately. One of the ways that can be done to stop its spreading is to break the spreading chain of the virus by detecting and doing quarantine. X-Ray imaging can be used as an alternative in detecting Covid-19. X-Ray is considered able to describe the condition of the lungs for Covid-19 suspected patients and can be a supporting tool for clinical diagnosis. In this study, we propose a residual based deep learning approach for Covid-19 detection using chest X-Ray images. Evaluation is carried out to determine the performance of the proposed method in the form of precision, recall, F1 and accuracy. Experiments results show that our proposed method provides precision, recall, F1 and accuracy respectively 0.98, 0.95, 0.97 and 99%. In the future, this study is expected to be validated and then used to support clinical diagnoses by doctors.Keywords: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network


2020 ◽  
Vol 18 (Suppl.1) ◽  
pp. 114-117
Author(s):  
N. Kirilov

PURPOSE: Dual-energy x-ray absorptiometry (DXA) is the “golden standard” for diagnosing osteoporosis. Its analyzing algorithm (software) makes it possible to distinguish the bone from the soft tissue. Until now there are only attempts to process and acquire images using automatic segmentation with convolutional neural networks (CNN). Machine reconstruction and precise specific models of anatomic structures from medical images could be accomplished using computer vision. The objective of the current work is to introduce the potential of the two computer methods and their application in the diagnostic DXA analysis. METHODS: DXA generates a report in the DICOM format which includes patient data (age, gender, height, weight, bone mineral density, T-score and Z-score) and an image of the scanned spine as well as the region of interest (ROI). The CNN methods are based mainly on intermediate analysis. The learning of the segmentation of CNN by generating segmentation labels using simple heuristic is done using computer vision. The functions of the loss and the architecture of the CNN is then determined. In that manner the right analysis of the existing medical image is made possible. RESULTS: The computer library OpenCV is the way to realize a model for the assessment of a DXA analysis. The library is available for Python programming language. The library has functions for the extraction of colour objects, image smoothing, Canny’s edge detector, Hough transform and methods for work with contours. CONCLUSIONS: The detection and extraction of images is fundamental for the analysis of DXA which is a step forward in the precision of the in-vivo diagnostic of the bone.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


Sign in / Sign up

Export Citation Format

Share Document