scholarly journals Structural and electrophysiological dysfunctions due to increased endoplasmic reticulum stress in a long-term pacing model using human induced pluripotent stem cell-derived ventricular cardiomyocytes

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Chang Cui ◽  
Le Geng ◽  
Jiaojiao Shi ◽  
Yue Zhu ◽  
Gang Yang ◽  
...  
Author(s):  
Jee Myung Yang ◽  
Sunho Chung ◽  
KyungA Yun ◽  
Bora Kim ◽  
Seongjun So ◽  
...  

AbstractRetinal degenerative disorders, including age-related macular degeneration and retinitis pigmentosa (RP), are characterized by the irreversible loss of photoreceptor cells and retinal pigment epithelial (RPE) cells; however, the long-term effect of implanting both human induced pluripotent stem cell (hiPSC)-derived RPE and photoreceptor for retinal regeneration has not yet been investigated. In this study, we evaluated the long-term effects of hiPSC-derived RPE and photoreceptor cell transplantation in Pde6b knockout rats to study RP; cells were injected into the subretinal space of the right eyes of rats before the appearance of signs of retinal degeneration at 2–3 weeks of age. Ten months after transplantation, we evaluated the cells using fundus photography, optical coherence tomography, and histological evaluation, and no abnormal cell proliferation was observed. A relatively large number of transplanted cells persisted during the first 4 months; subsequently, the number of these cells decreased gradually. Notably, immunohistochemical analysis revealed that the hiPSC-derived retinal cells showed characteristics of both RPE cells and photoreceptors of human origin after transplantation. Functional analysis of vision by scotopic electroretinogram revealed significant preservation of vision after transplantation. Our study suggests that the transplantation of hiPSC-derived retinal cells, including RPE cells and photoreceptors, has a potential therapeutic effect against irreversible retinal degenerative diseases.


2020 ◽  
pp. 247255522095320
Author(s):  
Shuyun Bai ◽  
Junjie Pei ◽  
Kan Chen ◽  
Ya Zhao ◽  
Henghua Cao ◽  
...  

Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) have been widely used for the assessment of drug proarrhythmic potential through multielectrode array (MEA). HiPSC-CM cultures beat spontaneously with a wide range of frequencies, however, which could affect drug-induced changes in repolarization. Pacing hiPSC-CMs at a physiological heart rate more closely resembles the state of in vivo ventricular myocytes and permits the standardization of test conditions to improve consistency. In this study, we systematically investigated the time window of stable ion currents in high-purity hiPSC-derived ventricular cardiomyocytes (hiPSC-vCMs) and confirmed that these cells could be used to correctly predict the proarrhythmic risk of Comprehensive In Vitro Proarrhythmia Assay (CiPA) reference compounds. To evaluate drug proarrhythmic potentials at a physiological beating rate, we used a MEA to electrically pace hiPSC-vCMs, and we recorded regular field potential waveforms in hiPSC-vCMs treated with DMSO and 10 CiPA reference drugs. Prolongation of field potential duration was detected in cells after exposure to high- and intermediate-risk drugs; in addition, drug-induced arrhythmia-like events were observed. The results of this study provide a simple and feasible method to investigate drug proarrhythmic potentials in hiPSC-CMs at a physiological beating rate.


2018 ◽  
Vol 499 (3) ◽  
pp. 611-617 ◽  
Author(s):  
Tiago P. Dias ◽  
Sandra N. Pinto ◽  
Juliana I. Santos ◽  
Tiago G. Fernandes ◽  
Fábio Fernandes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document