scholarly journals Synthesis and application of g-C3N4/Fe3O4/Ag nanocomposite for the efficient photocatalytic inactivation of Escherichia coli and Bacillus subtilis bacteria in aqueous solutions

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soudabeh Ghodsi ◽  
Ali Esrafili ◽  
Hamid Reza Sobhi ◽  
Roshanak Rezaei Kalantary ◽  
Mitra Gholami ◽  
...  

AbstractContamination of water with bacteria is one of the main causes of waterborne diseases. The photocatalytic method on the basis of bacterial inactivation seems to be a suitable disinfectant due to the lack of by-products formation. Herein, g-C3N4/Fe3O4/Ag nanocomposite combined with UV-light irradiation was applied for the inactivation two well-known bacteria namely, E. coli and B. subtilis. The nanocomposite was prepared by a hydrothermal method, and subsequently it was characterized by XRD, FT-IR, SEM, EDX and PL analyses. The optimum conditions established for the inactivation of both bacteria were as follows: nanocomposite dosage 3 g/L and bacterial density of 103 CFU/mL. In the meantime, the efficient inactivation of E. coli and B. subtilis took 30 and 150 min, respectively. The results also revealed that inactivation rate dropped with an increase in the bacterial density. It is also pointed out that OH˚ was found out to be the main radical species involved in the inactivation process. Finally, the kinetic results indicated that the inactivation of E. coli and B. subtilis followed the Weibull model. It is concluded that C3N4/Fe3O4/Ag nanocomposite along with UV-light irradiation is highly effective in inactivating E. coli and B. subtilis bacteria in the aqueous solutions.

RSC Advances ◽  
2015 ◽  
Vol 5 (117) ◽  
pp. 96305-96312 ◽  
Author(s):  
Jie Yang ◽  
Huiyong Wang ◽  
Jianji Wang ◽  
Xiaojia Guo ◽  
Yue Zhang

The aggregation behavior of a new class light-responsive ionic liquids was modulated efficiently by UV light irradiation in aqueous solutions.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1622
Author(s):  
Xiao-Pin Guo ◽  
Peng Zang ◽  
Yong-Mei Li ◽  
Dong-Su Bi

2-methylisoborneol (2-MIB) is a common taste and odor compound caused by off-flavor secondary metabolites, which represents one of the greatest challenges for drinking water utilities worldwide. A TiO2-coated activated carbon (TiO2/PAC) has been synthesized using the sol-gel method. A new TiO2/PAC photocatalyst has been successfully employed in photodegradation of 2-MIB under UV light irradiation. In addition, the combined results of XRD, SEM-EDX, FTIR and UV-Vis suggested that the nano-TiO2 had been successfully loaded on the surface of PAC. Experimental results of 2-MIB removal indicated that the adsorption capacities of PAC for 2-MIB were higher than that of TiO2/PAC. However, in the natural organic matter (NOM) bearing water, the removal efficiency of 2-MIB by TiO2/PAC and PAC were 97.8% and 65.4%, respectively, under UV light irradiation. Moreover, it was shown that the presence of NOMs had a distinct effect on the removal of MIB by TiO2/PAC and PAC. In addition, a simplified equivalent background compound (SEBC) model could not only be used to describe the competitive adsorption of MIB and NOM, but also represent the photocatalytic process. In comparison to other related studies, there are a few novel composite photocatalysts that could efficiently and rapidly remove MIB by the combination of adsorption and photocatalysis.


2021 ◽  
Vol 553 ◽  
pp. 149535
Author(s):  
Elisa Moretti ◽  
Elti Cattaruzza ◽  
Cristina Flora ◽  
Aldo Talon ◽  
Eugenio Casini ◽  
...  

2021 ◽  
Author(s):  
Yumei Mao ◽  
Xuehua Dong ◽  
Yuandan Deng ◽  
Jing Li ◽  
Ling Huang ◽  
...  

Two new zinc phosphites were prepared using the amino acid alanine as structure-directing agent. They have tubular and ladder-like structures exhibiting blue fluorescence upon UV light irradiation. Notably, the tubular...


1996 ◽  
Vol 54 (4) ◽  
pp. 331-337 ◽  
Author(s):  
M.Perla Colombini ◽  
Fabio Di Francesco ◽  
Roger Fuoco

1997 ◽  
Vol 105 (1219) ◽  
pp. 272-274
Author(s):  
Yutaka TAKAHASHI ◽  
Shigeo KOTAKE ◽  
Toshihiko OHTA ◽  
Akihito MATSUMURO ◽  
Masafumi SENOO

2015 ◽  
Vol 90 (5) ◽  
pp. 055802 ◽  
Author(s):  
Irmak Karaduman ◽  
Mehmet Demir ◽  
Dilber Esra Yıldız ◽  
Selim Acar

Sign in / Sign up

Export Citation Format

Share Document