scholarly journals Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuqi Du ◽  
Hui Zheng

AbstractAging happens to all of us as we live. Thanks to the improved living standard and discovery of life-saving medicines, our life expectancy has increased substantially across the world in the past century. However, the rise in lifespan leads to unprecedented increases in both the number and the percentage of individuals 65 years and older, accompanied by the increased incidences of age-related diseases such as type 2 diabetes mellitus and Alzheimer’s disease. FoxO transcription factors are evolutionarily conserved molecules that play critical roles in diverse biological processes, in particular aging and metabolism. Their dysfunction is often found in the pathogenesis of many age-related diseases. Here, we summarize the signaling pathways and cellular functions of FoxO proteins. We also review the complex role of FoxO in aging and age-related diseases, with focus on type 2 diabetes and Alzheimer’s disease and discuss the possibility of FoxO as a molecular link between aging and disease risks.

2019 ◽  
Vol 9 (10) ◽  
pp. 262 ◽  
Author(s):  
Hayden

Type 2 diabetes mellitus (T2DM) and late-onset Alzheimer’s disease–dementia (LOAD) are increasing in global prevalence and current predictions indicate they will only increase over the coming decades. These increases may be a result of the concurrent increases of obesity and aging. T2DM is associated with cognitive impairments and metabolic factors, which increase the cellular vulnerability to develop an increased risk of age-related LOAD. This review addresses possible mechanisms due to obesity, aging, multiple intersections between T2DM and LOAD and mechanisms for the continuum of progression. Multiple ultrastructural images in female diabetic db/db models are utilized to demonstrate marked cellular remodeling changes of mural and glia cells and provide for the discussion of functional changes in T2DM. Throughout this review multiple endeavors to demonstrate how T2DM increases the vulnerability of the brain’s neurovascular unit (NVU), neuroglia and neurons are presented. Five major intersecting links are considered: i. Aging (chronic age-related diseases); ii. metabolic (hyperglycemia advanced glycation end products and its receptor (AGE/RAGE) interactions and hyperinsulinemia-insulin resistance (a linking linchpin); iii. oxidative stress (reactive oxygen–nitrogen species); iv. inflammation (peripheral macrophage and central brain microglia); v. vascular (macrovascular accelerated atherosclerosis—vascular stiffening and microvascular NVU/neuroglial remodeling) with resulting impaired cerebral blood flow.


2022 ◽  
Vol 18 (3) ◽  
pp. 983-994
Author(s):  
Shengnan Shen ◽  
Qiwen Liao ◽  
Yin Kwan Wong ◽  
Xiao Chen ◽  
Chuanbin Yang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Luca ◽  
Maurizio Di Mauro ◽  
Marco Di Mauro ◽  
Antonina Luca

Gut microbiota consists of over 100 trillion microorganisms including at least 1000 different species of bacteria and is crucially involved in physiological and pathophysiological processes occurring in the host. An imbalanced gastrointestinal ecosystem (dysbiosis) seems to be a contributor to the development and maintenance of several diseases, such as Alzheimer’s disease, depression, and type 2 diabetes mellitus. Interestingly, the three disorders are frequently associated as demonstrated by the high comorbidity rates. In this review, we introduce gut microbiota and its role in both normal and pathological processes; then, we discuss the importance of the gut-brain axis as well as the role of oxidative stress and inflammation as mediators of the pathological processes in which dysbiosis is involved. Specific sections pertain the role of the altered gut microbiota in the pathogenesis of Alzheimer’s disease, depression, and type 2 diabetes mellitus. The therapeutic implications of microbiota manipulation are briefly discussed. Finally, a conclusion comments on the possible role of dysbiosis as a common pathogenetic contributor (via oxidative stress and inflammation) shared by the three disorders.


2022 ◽  
Vol 23 (1) ◽  
pp. 504
Author(s):  
Xuemin Peng ◽  
Rongping Fan ◽  
Lei Xie ◽  
Xiaoli Shi ◽  
Kun Dong ◽  
...  

Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.


2014 ◽  
Vol 13 (2) ◽  
pp. 305-311 ◽  
Author(s):  
Muhammad Naseer ◽  
Fehmida Bibi ◽  
Mohammed Alqahtani ◽  
Adeel Chaudhary ◽  
Esam Azhar ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 890
Author(s):  
Saghar Rabiei Poor ◽  
Miren Ettcheto ◽  
Amanda Cano ◽  
Elena Sanchez-Lopez ◽  
Patricia Regina Manzine ◽  
...  

Alzheimer’s disease (AD) is one of the most devastating brain disorders. Currently, there are no effective treatments to stop the disease progression and it is becoming a major public health concern. Several risk factors are involved in the progression of AD, modifying neuronal circuits and brain cognition, and eventually leading to neuronal death. Among them, obesity and type 2 diabetes mellitus (T2DM) have attracted increasing attention, since brain insulin resistance can contribute to neurodegeneration. Consequently, AD has been referred to “type 3 diabetes” and antidiabetic medications such as intranasal insulin, glitazones, metformin or liraglutide are being tested as possible alternatives. Metformin, a first line antihyperglycemic medication, is a 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activator hypothesized to act as a geroprotective agent. However, studies on its association with age-related cognitive decline have shown controversial results with positive and negative findings. In spite of this, metformin shows positive benefits such as anti-inflammatory effects, accelerated neurogenesis, strengthened memory, and prolonged life expectancy. Moreover, it has been recently demonstrated that metformin enhances synaptophysin, sirtuin-1, AMPK, and brain-derived neuronal factor (BDNF) immunoreactivity, which are essential markers of plasticity. The present review discusses the numerous studies which have explored (1) the neuropathological hallmarks of AD, (2) association of type 2 diabetes with AD, and (3) the potential therapeutic effects of metformin on AD and preclinical models.


Sign in / Sign up

Export Citation Format

Share Document