scholarly journals Special functions-based solutions of unsteady convective flow of a MHD Maxwell fluid for ramped wall temperature and velocity with concentration

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Muhammad Bilal Riaz ◽  
Jan Awrejcewicz ◽  
Aziz Ur Rehman ◽  
Muhammad Abbas

AbstractIn this paper a new approach is taken to find the exact solutions for generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate and is analyzed for ramped wall temperature and velocity with constant concentration. The vertical plate is suspended in a porous medium and encounters radiation effects. Solutions based on special functions are obtained using an integral transform for an unsteady MHD Maxwell fluid in the presence of ramped velocity, temperature and constant concentration. The relations for Nusselt number and skin-friction coefficient are efficiently computed to precisely estimate the rate of heat transfer at the boundary and the shear stress. Results are also discussed in detail and demonstrated graphically using software to comprehensively analyze the dynamics of the proposed problem, and the physical impact of several system parameters, such as magnetic field M, Prandtl number Pr, the relaxation time λ, dimensionless time τ, Schmidt number Sc, Mass and Thermal Grashof numbers Gm and Gr, respectively, is studied. Furthermore, solutions for some recently published work are compared with the current study that endorses the authenticity of our derived results and proves that those investigations are limiting or special cases of the current problem.

2021 ◽  
Vol 5 (4) ◽  
pp. 248
Author(s):  
Muhammad Bilal Riaz ◽  
Aziz-Ur Rehman ◽  
Jan Awrejcewicz ◽  
Ali Akgül

In this paper, a new approach to find exact solutions is carried out for a generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate, which is analyzed for ramped-wall temperature and velocity with constant concentration. The vertical plate is suspended in a porous medium and encounters the effects of radiation. An innovative definition of the time-fractional operator in power-law-kernel form is implemented to hypothesize the constitutive mass, energy, and momentum equations. The Laplace integral transformation technique is applied on a dimensionless form of governing partial differential equations by introducing some non-dimensional suitable parameters to establish the exact expressions in terms of special functions for ramped velocity, temperature, and constant-concentration fields. In order to validate the problem, the absence of the mass Grashof parameter led to the investigated solutions obtaining good agreement in existing literature. Additionally, several system parameters were used, such as as magnetic value M, Prandtl value Pr, Maxwell parameter λ, dimensionless time τ, Schmidt number “Sc”, fractional parameter α, andMass and Thermal Grashof numbers Gm and Gr, respectively, to examine their impacts on velocity, wall temperature, and constant concentration. Results are also discussed in detail and demonstrated graphically via Mathcad-15 software. A comprehensive comparative study between fractional and non-fractional models describes that the fractional model elucidate the memory effects more efficiently.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dumitru Baleanu ◽  
Praveen Agarwal

A remarkably large number of fractional integral formulas involving the number of special functions, have been investigated by many authors. Very recently, Agarwal (National Academy Science Letters) gave some integral transform and fractional integral formulas involving theFpα,β·. In this sequel, here, we aim to establish some image formulas by applying generalized operators of the fractional integration involving Appell’s functionF3(·)due to Marichev-Saigo-Maeda. Some interesting special cases of our main results are also considered.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Manish Kumar Bansal ◽  
Devendra Kumar

Abstract Recently, Srivastava, Saxena and Parmar [H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H ¯ {\overline{H}} -functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys. 25 2018, 1, 116–138] suggested incomplete H-functions (IHF) that paved the way to a natural extension and decomposition of H-function and other connected functions as well as to some important closed-form portrayals of definite and improper integrals of different kinds of special functions of physical sciences. In this article, our key aim is to present some new integral transform (Jacobi transform, Gegenbauer transform, Legendre transform and 𝖯 δ {\mathsf{P}_{\delta}} -transform) of this family of incomplete H-functions. Further, we give several interesting new and known results which are special cases our key results.


2009 ◽  
Vol 14 (1) ◽  
pp. 27-40 ◽  
Author(s):  
M.-E. M. Khedr ◽  
A. J. Chamkha ◽  
M. Bayomi

This work considers steady, laminar, MHD flow of a micropolar fluid past a stretched semi-infinite, vertical and permeable surface in the presence of temperature dependent heat generation or absorption, magnetic field and thermal radiation effects. A set of similarity parameters is employed to convert the governing partial differential equations into ordinary differential equations. The obtained self-similar equations are solved numerically by an efficient implicit, iterative, finite-difference method. The obtained results are checked against previously published work for special cases of the problem in order to access the accuarcy of the numerical method and found to be in excellent agreement. A parametric study illustrating the influence of the various physical parameters on the skin friction coefficient, microrotaion coefficient or wall couple stress as well as the wall heat transfer coefficient or Nusselt number is conducted. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2023
Author(s):  
Christopher Nicholas Angstmann ◽  
Byron Alexander Jacobs ◽  
Bruce Ian Henry ◽  
Zhuang Xu

There has been considerable recent interest in certain integral transform operators with non-singular kernels and their ability to be considered as fractional derivatives. Two such operators are the Caputo–Fabrizio operator and the Atangana–Baleanu operator. Here we present solutions to simple initial value problems involving these two operators and show that, apart from some special cases, the solutions have an intrinsic discontinuity at the origin. The intrinsic nature of the discontinuity in the solution raises concerns about using such operators in modelling. Solutions to initial value problems involving the traditional Caputo operator, which has a singularity inits kernel, do not have these intrinsic discontinuities.


2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyi Guo ◽  
Jianwei Zhou ◽  
Huantian Xie ◽  
Ziwu Jiang

The magnetohydrodynamic (MHD) peristaltic flow of the fractional Jeffrey fluid through porous medium in a nonuniform channel is presented. The fractional calculus is considered in Darcy’s law and the constitutive relationship which included the relaxation and retardation behavior. Under the assumptions of long wavelength and low Reynolds number, the analysis solutions of velocity distribution, pressure gradient, and pressure rise are investigated. The effects of fractional viscoelastic parameters of the generalized Jeffrey fluid on the peristaltic flow and the influence of magnetic field, porous medium, and geometric parameter of the nonuniform channel are presented through graphical illustration. The results of the analogous flow for the generalized second grade fluid, the fractional Maxwell fluid, are also deduced as special cases. The comparison among them is presented graphically.


2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


2011 ◽  
Vol 16 (2) ◽  
pp. 135-151 ◽  
Author(s):  
Muhammad Athar ◽  
Corina Fetecau ◽  
Muhammad Kamran ◽  
Ahmad Sohail ◽  
Muhammad Imran

The velocity field and the adequate shear stress corresponding to the flow of a fractional Maxwell fluid (FMF) between two infinite coaxial cylinders, are determined by means of the Laplace and finite Hankel transforms. The motion is produced by the inner cylinder that at time t = 0+ applies a shear stress fta (a ≥ 0) to the fluid. The solutions that have been obtained, presented under series form in terms of the generalized G and R functions, satisfy all imposed initial and boundary conditions. Similar solutions for ordinary Maxwell and Newtonian fluids are obtained as special cases of general solutions. The unsteady solutions corresponding to a = 1, 2, 3, ... can be written as simple or multiple integrals of similar solutions for a = 0 and we extend this for any positive real number a expressing in fractional integration. Furthermore, for a = 0, 1 and 2, the solutions corresponding to Maxwell fluid compared graphically with the solutions obtained in [1–3], earlier by a different technique. For a = 0 and 1 the unsteady motion of a Maxwell fluid, as well as that of a Newtonian fluid ultimately becomes steady and the required time to reach the steady-state is graphically established. Finally a comparison between the motions of FMF and Maxwell fluid is underlined by graphical illustrations.


Sign in / Sign up

Export Citation Format

Share Document