scholarly journals Iterative methods for solving the multiple-sets split feasibility problem with splitting self-adaptive step size

2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Yuchao Tang ◽  
Chuanxi Zhu ◽  
Hui Yu
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Habib ur Rehman ◽  
Anteneh Getachew Gebrie

<p style='text-indent:20px;'>In this paper, we propose two new self-adaptive inertial relaxed <inline-formula><tex-math id="M2">\begin{document}$ CQ $\end{document}</tex-math></inline-formula> algorithms for solving the split feasibility problem with multiple output sets in the framework of real Hilbert spaces. The proposed algorithms involve computing projections onto half-spaces instead of onto the closed convex sets, and the advantage of the self-adaptive step size introduced in our algorithms is that it does not require the computation of operator norm. We establish and prove weak and strong convergence theorems for the iterative sequences generated by the introduced algorithms for solving the aforementioned problem. Moreover, we apply the new results to solve some other problems. Finally, we present some numerical examples to illustrate the implementation of our algorithms and compared them to some existing results.</p>


Axioms ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Hammed Anuoluwapo Abass ◽  
Lateef Olakunle Jolaoso

In this paper, we propose a generalized viscosity iterative algorithm which includes a sequence of contractions and a self adaptive step size for approximating a common solution of a multiple-set split feasibility problem and fixed point problem for countable families of k-strictly pseudononspeading mappings in the framework of real Hilbert spaces. The advantage of the step size introduced in our algorithm is that it does not require the computation of the Lipschitz constant of the gradient operator which is very difficult in practice. We also introduce an inertial process version of the generalize viscosity approximation method with self adaptive step size. We prove strong convergence results for the sequences generated by the algorithms for solving the aforementioned problems and present some numerical examples to show the efficiency and accuracy of our algorithm. The results presented in this paper extends and complements many recent results in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Youli Yu

An explicit iterative method with self-adaptive step-sizes for solving the split feasibility problem is presented. Strong convergence theorem is provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Haiying Li ◽  
Yulian Wu ◽  
Fenghui Wang

The split feasibility problem SFP has received much attention due to its various applications in signal processing and image reconstruction. In this paper, we propose two inertial relaxed C Q algorithms for solving the split feasibility problem in real Hilbert spaces according to the previous experience of applying inertial technology to the algorithm. These algorithms involve metric projections onto half-spaces, and we construct new variable step size, which has an exact form and does not need to know a prior information norm of bounded linear operators. Furthermore, we also establish weak and strong convergence of the proposed algorithms under certain mild conditions and present a numerical experiment to illustrate the performance of the proposed algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qiao-Li Dong ◽  
Songnian He

We present a projection algorithm which modifies the method proposed by Censor and Elfving (1994) and also introduce a self-adaptive algorithm for the multiple-sets split feasibility problem (MSFP). The global rates of convergence are firstly investigated and the sequences generated by two algorithms are proved to converge to a solution of the MSFP. The efficiency of the proposed algorithms is illustrated by some numerical tests.


Sign in / Sign up

Export Citation Format

Share Document