scholarly journals Attack detection in water distribution systems using machine learning

Author(s):  
Daniel T. Ramotsoela ◽  
Gerhard P. Hancke ◽  
Adnan M. Abu-Mahfouz
Author(s):  
Maryam Kammoun ◽  
Amina Kammoun ◽  
Mohamed Abid

Abstract Leakage in water distribution systems is a significant long-standing problem due to the huge economic and ecological losses. Different leak detection studies have been examined in literature using different types of technologies and data. Currently, although machine learning techniques have achieved tremendous progress in outlier detection approaches, they are still limited in terms of water leak detection applications. This research aims to improve the leak detection performances by refining the choices of learning data and techniques. From this perspective, commonly used techniques for leak detection are assessed in this paper, and the characteristics of hydraulic data are investigated. Four intelligent algorithms are compared, namely k-nearest neighbors, support vector machines, logistic regression, and multi-layer perceptron. This study focuses on six experiments based on identifying outliers in various packages of pressure and flow data, yearly data, seasonal data, night data, and flow data difference to detect leakage in water distribution networks. Different scenarios of realistic water demand in two networks from the benchmark dataset LeakDB are used. Results demonstrate that the leak detection accuracy varies between 30% and 100% depending on the experiment and the choices of algorithms and data.


2020 ◽  
Author(s):  
Mashor Housh ◽  
Noy Kadosh ◽  
Alex Frid

<p>Water Distribution Systems (WDSs) are critical infrastructures that supply drinking water from water sources to end-users. Smart WDSs could be designed by integrating physical components (e.g. valve and pumps) with computation and networking devices. As such, in smart WDSs, pumps and valves are automatically controlled together with continuous monitoring of important systems' parameters. However, despite its advantage of improved efficacy, the automated control and operation through a cyber-layer can expose the system to cyber-physical attacks. One-Class classification technique is proposed to detect such attacks by analyzing collected sensors' readings from the system components. One-class classifiers have been found suitable for classifying "normal" and "abnormal" conditions with unbalanced datasets, which are expected in the cyber-attack detection problem. In the cyber-attack detection problem, typically, most of the data samples are under the "normal" state, and only small fraction of the samples can be suspected as under-attack (i.e. "abnormal" state). The results of this study demonstrate that one-class classification algorithms can be suitable for the cyber-attack detection problem and can compete with existing approaches. More specifically, this study examines the Support Vector Data Description (SVDD) method together with a tailored features selection methodology, which is based on the physical understanding of the WDS topology. The developed algorithm is examined on BATADAL datasets, which demonstrate a quasi-realistic case study and on a new case study of a large-scale WDS.</p>


Smart Cities ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1293-1315
Author(s):  
Neda Mashhadi ◽  
Isam Shahrour ◽  
Nivine Attoue ◽  
Jamal El Khattabi ◽  
Ammar Aljer

This paper presents an investigation of the capacity of machine learning methods (ML) to localize leakage in water distribution systems (WDS). This issue is critical because water leakage causes economic losses, damages to the surrounding infrastructures, and soil contamination. Progress in real-time monitoring of WDS and ML has created new opportunities to develop data-based methods for water leak localization. However, the managers of WDS need recommendations for the selection of the appropriate ML methods as well their practical use for leakage localization. This paper contributes to this issue through an investigation of the capacity of ML methods to localize leakage in WDS. The campus of Lille University was used as support for this research. The paper is presented as follows: First, flow and pressure data were determined using EPANET software; then, the generated data were used to investigate the capacity of six ML methods to localize water leakage. Finally, the results of the investigations were used for leakage localization from offline water flow data. The results showed excellent performance for leakage localization by the artificial neural network, logistic regression, and random forest, but there were low performances for the unsupervised methods because of overlapping clusters.


Sign in / Sign up

Export Citation Format

Share Document