scholarly journals Existing evidence on the outcomes of wildlife translocations in protected areas: a systematic map

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Joseph Langridge ◽  
Romain Sordello ◽  
Yorick Reyjol

Abstract Background Ecosystem degradation, mainly through overexploitation and destruction of natural habitats, is a well-known threat to the viability and persistence of many species’ populations worldwide. The use of translocations as a viable conservation tool in conjunction with protected areas has been rapidly increasing over the last few decades. Protected areas such as strict nature reserves, national parks, and species management areas continue to be central tools for biodiversity conservation as they provide vital habitats set aside from various human pressures. Because action consistently runs ahead of policy, the need for a clearer evidence base on the outcomes of wildlife translocations undertaken at a global scale is becoming increasingly urgent for scientific and decision-making communities, in order to build clear strategy frameworks around conservation translocations. We therefore conducted a systematic mapping exercise to provide an overview of the existing evidence on the outcomes of wildlife translocations in protected areas. Methods We searched two bibliographic databases, four web-based search engines with search-by-key-words capacity, 5 specialist websites, and conducted a grey literature call through two project stakeholders. We screened articles by title, abstract, and full text using pre-defined inclusion criteria all the while assessing the consistency of the reviewers. All relevant translocations were coded from retained publications. Key variables of interest were extracted and coded for each translocation event. The quantity and characteristics of the available evidence and knowledge gaps/clusters are summarised. The distribution and frequency of translocations are presented in heat- and geographical maps. Review findings A total of 613 articles were considered eligible for coding bibliometric data. Metapopulation management and review articles were not coded for quantitative and qualitative variables. Linked data (duplicated translocations) were also excluded. Finally, 841 studies of different translocation events were fully coded from 498 articles. Most of these translocations were carried out in North America and Oceania. The most commonly undertaken intervention types were one-off supplementations and “supplemented reintroductions”. Mammals were by far the most transferred group among animals. Magnoliopsida was the most translocated plant group. Survival, space use, and demography metrics were the most studied outcomes on translocated species. Conclusions This systematic map provides an up-to-date global catalogue of the available evidence on wildlife translocations to, from, or within protected areas. It should enable protected area managers to better understand their role in the global network of protected areas, regarding translocation practice, both as suppliers or recipients of translocated species. It may help managers and practitioners make their own choices by comparing previous experiences, regarding both the species concerned and the precise translocation modalities (number of individuals, etc.). Finally, it constitutes a decision-making tool for managers as well as for policy makers for future translocations.

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Solveig L. Johannesdottir ◽  
Biljana Macura ◽  
Jennifer McConville ◽  
Dag Lorick ◽  
Neal R. Haddaway ◽  
...  

Abstract Background Eutrophication of the Baltic Sea, and many other water bodies, is partly the result of point-source emissions of nutrients and carbon from wastewater. At the same time, nitrogen and phosphorus planetary boundaries have been breached. There is a need for more efficient resource management, including the recovery and reuse of nutrients and carbon in waste. The aim of this paper is to collate evidence on ecotechnologies intended for use in the wastewater sector globally to facilitate the recovery or reuse of carbon and/or nutrients. Methods Searches were performed on literature published between 2013 and 2017 and in 5 bibliographic databases, 1 search engine, and 38 specialist websites. Database searches were performed in English. Searches in specialist websites were also performed in Finnish, Polish and Swedish. There was no geographical limitation. Screening was conducted at title and abstract level, and on full texts. Apart from bibliographical information, we extracted information on ecotechnology type, intervention, details of the recovery or reuse, the type of wastewater stream to which the ecotechnology is applied, the study location, type and design. Prior to screening and coding, we conducted consistency checks amongst reviewers. We generated a searchable database of coded studies. Findings were synthesised narratively and visualised in a geographical information system (i.e. an evidence atlas). We identified a series of knowledge gaps and clusters that warrant further research. Results The search resulted in 4024 records, out of which 413 articles were retained after the screening process. In addition, 35 pre-screened studies from the specialist website searches were added. Together, these 448 articles contained 474 individual studies of 28 types of ecotechnologies. A combination of ecotechnologies (16.7%), followed by microalgae cultivation (14.1%) were the most frequent ecotechnologies in the evidence base. Ecotechnologies for recovery composed 72.6% of the evidence base. The most common wastewater streams for recovery were mixed wastewater and sludge (73.8%). There was a relative lack of studies on recovery from source-separated wastewater. The most common type of recovery was energy (27.3%), followed by simultaneous recovery of nitrogen and phosphorus (22.1%). Reuse of recovered substances was described in 22.8% of the studies. The most common type of reuse was of nitrogen and phosphorus (57.4%), followed by joint reuse of organic carbon, nitrogen and phosphorus (35.2%). Reuse ecotechnologies were mostly focused on the use of wastewater for irrigation or reuse of biosolids, and not on the nutrients that had been extracted through e.g. precipitation of struvite. In 22 studies both recovery and reuse were described. In total, 60 different study countries were reported in the evidence base, and the most common study location was China. Conclusions We found substantial evidence for the recovery and reuse of nutrients and carbon from wastewater sources. The relative abundance of studies where substances are recovered compared to studies where they are reused, suggests a knowledge gap on reuse of recovered nutrients and carbon. The majority of studies on reuse were on irrigation with treated wastewater or reuse of biosolids, and not on reuse of extracted nutrients such as struvite.


BMJ Open ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. e032788
Author(s):  
Clayon Hamilton ◽  
M Elizabeth Snow ◽  
Nancy Clark ◽  
Shannon Gibson ◽  
Maryam Dehnadi ◽  
...  

IntroductionTo advance person- and family-centred healthcare, government initiatives have supported the engagement of patients and family caregivers in decision-making in healthcare systems. There is, however, no consensus on how to define success for such initiatives. This scoping review aims to identify the key elements for defining the quality of patient and family caregiver engagement in decision-making across the engagement domains (individual, community/organisation, system) of British Columbia’s healthcare system. We will use those elements to develop a conceptual evaluation framework.Methods and analysisThis scoping review follows Arskey and O’Malley’s methodology. (1) The research question was identified through team discussions. (2) Articles for data source will be identified using a librarian-informed search strategy for seven bibliographic databases as well as grey literature sources. (3) Selected articles will be relevant to the evaluation of patient and family caregiver engagement in healthcare systems. (4) Two researchers will independently extract data into predefined and emerging categories. (5) The researchers will reconcile and organise the identified elements. The research team’s collective perspective will then refine the elements, and select, interpret and summarise the results. (6) Persons from key stakeholder groups will be consulted to refine the emergent conceptual framework.Ethics and disseminationWe will seek ethics approval for the stakeholder consultation. This study follows an integrated knowledge translation approach. The results will inform evaluation of the Patients as Partners Initiative of the British Columbia Ministry of Health, and will be disseminated as a scientific article, a research brief, and presentations at conferences and stakeholder meetings.


2021 ◽  
Vol 4 ◽  
pp. 1-13
Author(s):  
Blessing Akombi-Inyang ◽  
Md. Nazmul Huda ◽  
Judith Byaruhanga ◽  
Andre Renzaho

Background: The double burden of malnutrition (DBM) increases the risk of developing non-communicable diseases among migrant and refugee populations living in developed countries. This systematic review aims to examine the DBM among migrants and refugees in developed countries. It aims to appraise, synthesise, and summarise literature to create an evidence base that looks at multiple faces of DBM. Methods/Design: This protocol is informed by the standard Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) guidelines. A systematic review of peer-reviewed quantitative, qualitative and mixed-methods studies on DBM among migrants and refugees in developed countries will be undertaken. The review will include only studies published in English. Eight bibliographic databases will be searched: Ovid MEDLINE, EMBASE, PsycINFO, CINAHL, ProQuest, Scopus, PubMed, and web of science. Grey literature will also be searched. Studies that meet the inclusion criteria will be imported to Covidence. Screening for eligible studies will be conducted by two independent researchers. The quality of included studies will be appraised for risk of bias using validated tools. A narrative synthesis approach will be undertaken to report retrieved data. Discussion: The protocol provides insight into the scope and parameters of the systematic review to be conducted.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Elisa Vilvert ◽  
Åke Olson ◽  
Ann-Charlotte Wallenhammar ◽  
Jonas Törngren ◽  
Anna Berlin

Abstract Background Oat (Avena sativa L.) is an important cereal crop for livestock feed and human consumption. The largest oat-producing countries are located in the Northern Hemisphere with Sweden as the tenth largest producer. Oat production is challenged by different diseases that can lead to significant yield reductions and impaired grain quality. The use of efficient and sustainable plant protection management is of great economic and ecological importance. The systematic map in this study aims to provide a knowledge base inventory and to identify areas that need to be researched in the future in terms of plant disease management for more sustainable oat production. Methods Literature searches were conducted in both academic bibliographic databases and relevant online sources of grey literature. A time-span restriction of 40 years (1978–2018) was applied to the searches. English was used in all searches, and Swedish, Norwegian and Danish languages were used in the grey literature searches. The screening process, which followed a protocol with eligibility criteria, was conducted at three levels: title, abstract and full text. Metadata incorporating bibliographic information, study location, climatic zone, disease name, the common and scientific names of the disease-causing organism, pathogen type, intervention and management methods, diseased plant part, plant stage, and outcome were extracted from the studies and included in the systematic map. The systematic map findings are visualized in figures and tables and described. All included studies can be found in a searchable database. Review findings A total of 58 eligible articles, most (n = 51) from scientific journals published in English, were included in the systematic map. A majority of the studies were conducted in the Northern Hemisphere in temperate climatic zones, where most of the world’s oats are produced. The earliest article was published in 1980, followed by an oscillating temporal distribution of articles over the following years. By country, Canada had the highest number of articles, and by region, Europe had the highest number. Fungi were the most studied pathogen type, and a total of 16 different diseases were reported. Fusarium head blight (Fusarium spp.) and crown rust (Puccinia coronata) were the most studied diseases. In total, 17 different intervention management approaches for controlling the diseases were analyzed in the articles, with cultivar resistance and pesticide application as the most studied methods. Conclusion The map highlights the low quantity of available relevant field research on oat disease management. To our knowledge, this is the first systematic map of crop protection. This map provides a database of scientific literature that can be used to develop sustainable disease management strategies. The method used in this study has great potential and can also be used to benefit other crops. Research is often based on the availability of funding, and this map could be a useful tool for researchers and funding organizations to identify relevant research topics that need to be further studied. In addition, this systematic map offers a useful tool for field-based advisors in providing scientifically relevant crop protection strategies for farmers.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


2021 ◽  
Author(s):  
Neal R. Haddaway

Abstract Background: Mining activities, including prospecting, exploration, construction, operation, maintenance, expansion, abandonment, decommissioning and repurposing of a mine can impact social and environmental systems in a range of positive and negative, and direct and indirect ways. Mining can yield a range of benefits to societies, but it may also cause conflict, not least in relation to above-ground and sub-surface land use. Similarly, mining can alter environments, but remediation and mitigation can restore systems. Boreal and Arctic regions are sensitive to impacts from development, both on social and environmental systems. Native ecosystems and aboriginal human communities are typically affected by multiple stressors, including climate change and pollution, for example. Methods: We will search a suite of bibliographic databases, online search engines and organisational websites for relevant research literature using a tested search strategy. We will also make a call for evidence to stakeholders that have been identified in the wider 3MK project (https://osf.io/cvh3u/). We will screen identified and retrieved articles at two distinct stages (title and abstract, and full text) according to a predetermined set of inclusion criteria, with consistency checks at each level to ensure criteria can be made operational. We will then extract detailed information relating to causal linkages between actions or impacts and measured outcomes, along with descriptive information about the articles and studies and enter data into an interactive systematic map database. We will visualise this database on an Evidence Atlas (an interactive, cartographic map) and identify knowledge gaps and clusters using Heat Maps (cross-tabulations of important variables, such as mineral type and studied impacts). We will identify good research practices that may support researchers in selecting the best study designs where these are clear in the evidence base.


Sign in / Sign up

Export Citation Format

Share Document