scholarly journals Production of medium-chain volatile flavour esters in Pichia pastoris whole-cell biocatalysts with extracellular expression of Saccharomyces cerevisiae acyl-CoA:ethanol O-acyltransferase Eht1 or Eeb1

SpringerPlus ◽  
2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Shiwen Zhuang ◽  
Junshu Fu ◽  
Chris Powell ◽  
Jinhai Huang ◽  
Yihe Xia ◽  
...  
2015 ◽  
Vol 69 (6) ◽  
pp. 689-701
Author(s):  
Vojin Tadic ◽  
Ana Balaz ◽  
Marija Petric ◽  
Snezana Milosevic ◽  
Nevena Zelenovic ◽  
...  

We have cloned the gene for carbohydrate oxidase (CHO) from Lactuca sativa in two species of yeasts (Saccharomyces cerevisiae and Pichia pastoris). The synthetic gene for the carbohydrate oxidase (1821 bp) from L. sativa cloned into the vector pUC57 and inserted into plasmids pYES2 and pGAP using Escherichia coli DH5? strain. The P. pastoris strain X-33 and the S. cerevisiae strain InvSC1 were used for extracellular expression of CHO. After transformation of P. pastoris X-33 with CHO-pGAP construct none of the colonies showed CHO activity. Two samples displayed a band which did not exist in the sample with the empty vector similar to the molecular weight of CHO. The S. cerevisiae strain InvSC1 has been also transformed with CHO-pYES constructs. Three colonies grew on the plate with cells transformed with the construct. One of the samples showed a band corresponding to about 110 kDa, but no CHO activity was recorded in this case either. Cloning of the foreign genes and heterologous expression in yeasts is widely used in biotechnology, but sometimes can be very dependent on the gene sequence and strain used. In order to obtain active CHO enzyme further studies on purification and refolding of expressed protein are necessary.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Huiyi Shang ◽  
Danni Yang ◽  
Dairong Qiao ◽  
Hui Xu ◽  
Yi Cao

Levan has wide applications in chemical, cosmetic, pharmaceutical and food industries. The free levansucrase is usually used in the biosynthesis of levan, but the poor reusability and low stability of free levansucrase have limited its large-scale use. To address this problem, the surface-displayed levansucrase in Saccharomyces cerevisiae were generated and evaluated in this study. The levansucrase from Zymomonas mobilis was displayed on the cell surface of Saccharomyces cerevisiae EBY100 using a various yeast surface display platform. The N-terminal fusion partner is based on a-agglutinin, and the C-terminal one is Flo1p. The yield of levan produced by these two whole-cell biocatalysts reaches 26 g/L and 34 g/L in 24 h, respectively. Meanwhile, the stability of the surface-displayed levansucrases is significantly enhanced. After six reuses, these two biocatalysts retained over 50% and 60% of their initial activities, respectively. Furthermore, the molecular weight and polydispersity test of the products suggested that the whole-cell biocatalyst of levansucrase displayed by Flo1p has more potentials in the production of levan with low molecular weight which is critical in certain applications. In conclusion, our method not only enable the possibility to reuse the enzyme, but also improves the stability of the enzyme.


2006 ◽  
Vol 72 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Bo Zhang ◽  
Ross Carlson ◽  
Friedrich Srienc

ABSTRACT Polyhydroxyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical β-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a peroxisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as β-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.


2018 ◽  
Vol 7 ◽  
pp. e00077 ◽  
Author(s):  
Sandra Moser ◽  
Gernot A. Strohmeier ◽  
Erich Leitner ◽  
Thomas J. Plocek ◽  
Koenraad Vanhessche ◽  
...  

2014 ◽  
Vol 8 (S4) ◽  
Author(s):  
Luciana Facchinetti de Castro Girão ◽  
Surza Lucia Gonçalves da Rocha ◽  
Ricardo Sobral Teixeira ◽  
Maria Antonieta Ferrara ◽  
Jonas Perales ◽  
...  

1991 ◽  
Vol 11 (9) ◽  
pp. 4555-4560 ◽  
Author(s):  
M Woontner ◽  
P A Wade ◽  
J Bonner ◽  
J A Jaehning

We report an improved in vitro transcription system for Saccharomyces cerevisiae. Small changes in assay and whole-cell extraction procedures increase selective initiation by RNA polymerase II up to 60-fold over previous conditions (M. Woontner and J. A. Jaehning, J. Biol. Chem. 265:8979-8982, 1990), to levels comparable to those obtained with nuclear extracts. We have found that the simultaneous use of distinguishable templates with and without an upstream activation sequence is critical to the measurement of apparent activation. Transcription from any template was very sensitive to the concentrations of template and nontemplate DNA, extract, and activator (GAL4/VP16). Alterations in reaction conditions led to proportionately greater changes from a template lacking an upstream activation sequence; thus, the apparent ratio of activation is largely dependent on the level of basal transcription. Using optimal conditions for activation, we have also demonstrated activation by a bona fide yeast activator, heat shock transcription factor.


Sign in / Sign up

Export Citation Format

Share Document