scholarly journals Prognostic value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure: a retrospective cohort study

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasutaka Hirasawa ◽  
Taka-aki Nakada ◽  
Takashi Shimazui ◽  
Mitsuhiro Abe ◽  
Yuri Isaka ◽  
...  

Abstract Background Cellular patterns in bronchoalveolar lavage fluid (BALF) are used to distinguish or rule out particular diseases in patients with acute respiratory failure (ARF). However, whether BALF cellular patterns can predict mortality or not is unknown. We test the hypothesis that BALF cellular patterns have predictive value for mortality in patients with ARF. Methods This was a retrospective single-center observational study conducted in a Japanese University Hospital. Consecutive patients (n = 78) with both pulmonary infiltrates and ARF who were examined by bronchoalveolar lavage (BAL) between April 2015 and May 2018 with at least 1 year of follow-up were analyzed. Primary analysis was receiver operating characteristic curve—area under the curve (ROC-AUC) analysis for 1-year mortality. Results Among the final sample size of 78 patients, survivors (n = 56) had significantly increased lymphocyte and eosinophil counts and decreased neutrophil counts in BALF compared with non-survivors (n = 22). Among the fractions, lymphocyte count was the most significantly different (30 [12-50] vs. 7.0 [2.9-13]%, P <0.0001). In the ROC curve analysis of the association of BALF lymphocytes with 1-year mortality, the AUC was 0.787 (P <0.0001, cut-off value [Youden index] 19.0%). Furthermore, ≥20% BALF lymphocytes were significantly associated with increased survival with adjustment for baseline imbalances (1-year adjusted hazard ratio, 0.0929; 95% confidence interval, 0.0147–0.323, P <0.0001; 90-day P =0.0012). Increased survival was significantly associated with ≥20% BALF lymphocytes in both interstitial lung disease (ILD) and non-ILD subgroups (P =0.0052 and P =0.0033, respectively). In secondary outcome analysis, patients with ≥20% BALF lymphocytes had significantly increased ventilator-free days, which represents less respiratory dysfunction than those with <20% BALF lymphocytes. Conclusions In the patients with ARF, ≥20% lymphocytes in BALF was associated with significantly less ventilatory support, lower mortality at both 90-day and 1-year follow-ups.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yifu Si ◽  
Juqin Shao ◽  
Caibao Hu

AbstractThis is a comment on the paper by Dr. Hirasawa et al. on the predictive value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Suguru Takeuchi ◽  
Jun-ichi Kawada ◽  
Kazuhiro Horiba ◽  
Yusuke Okuno ◽  
Toshihiko Okumura ◽  
...  

Abstract Next-generation sequencing (NGS) has been applied in the field of infectious diseases. Bronchoalveolar lavage fluid (BALF) is considered a sterile type of specimen that is suitable for detecting pathogens of respiratory infections. The aim of this study was to comprehensively identify causative pathogens using NGS in BALF samples from immunocompetent pediatric patients with respiratory failure. Ten patients hospitalized with respiratory failure were included. BALF samples obtained in the acute phase were used to prepare DNA- and RNA-sequencing libraries. The libraries were sequenced on MiSeq, and the sequence data were analyzed using metagenome analysis tools. A mean of 2,041,216 total reads were sequenced for each library. Significant bacterial or viral sequencing reads were detected in eight of the 10 patients. Furthermore, candidate pathogens were detected in three patients in whom etiologic agents were not identified by conventional methods. The complete genome of enterovirus D68 was identified in two patients, and phylogenetic analysis suggested that both strains belong to subclade B3, which is an epidemic strain that has spread worldwide in recent years. Our results suggest that NGS can be applied for comprehensive molecular diagnostics as well as surveillance of pathogens in BALF from patients with respiratory infection.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chiara Dentone ◽  
Antonio Vena ◽  
Maurizio Loconte ◽  
Federica Grillo ◽  
Iole Brunetti ◽  
...  

Abstract Background The primary objective of the study is to describe the cellular characteristics of bronchoalveolar lavage fluid (BALF) of COVID-19 patients requiring invasive mechanical ventilation; the secondary outcome is to describe BALF findings between survivors vs non-survivors. Materials and methods Patients positive for SARS-CoV-2 RT PCR, admitted to ICU between March and April 2020 were enrolled. At ICU admission, BALF were analyzed by flow cytometry. Univariate, multivariate and Spearman correlation analyses were performed. Results Sixty-four patients were enrolled, median age of 64 years (IQR 58–69). The majority cells in the BALF were neutrophils (70%, IQR 37.5–90.5) and macrophages (27%, IQR 7–49) while a minority were lymphocytes, 1%, TCD3+ 92% (IQR 82–95). The ICU mortality was 32.8%. Non-survivors had a significantly older age (p = 0.033) and peripheral lymphocytes (p = 0.012) were lower compared to the survivors. At multivariate analysis the percentage of macrophages in the BALF correlated with poor outcome (OR 1.336, CI95% 1.014–1.759, p = 0.039). Conclusions In critically ill patients, BALF cellularity is mainly composed of neutrophils and macrophages. The macrophages percentage in the BALF at ICU admittance correlated with higher ICU mortality. The lack of lymphocytes in BALF could partly explain a reduced anti-viral response.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S658-S659
Author(s):  
Suguru Takeuchi ◽  
Jun-ichi Kawada ◽  
Kazuhiro Horiba ◽  
Yusuke Okuno ◽  
Toshihiko Okumura ◽  
...  

Abstract Background In the field of infectious diseases, identification of etiologic pathogen is essential for definitive diagnosis and decisions regarding appropriate management. Bronchoalveolar lavage fluid (BALF) is considered a sterile type of specimen that is suitable for detecting pathogens of respiratory infections. Recently, next-generation sequencing (NGS) has been applied in the field of infectious diseases and has enabled us to identify pathogenic microorganisms comprehensively. The aim of this study was to comprehensively identify pathogens using NGS in BALF samples from immunocompetent pediatric patients with respiratory failure. Methods Ten patients hospitalized in the pediatric intensive care unit with respiratory failure were included. BALF samples obtained in the acute phase were used to prepare DNA- and RNA-sequencing libraries. The libraries were sequenced on MiSeq, and the sequence data were analyzed using metagenome analysis tools. Results A mean of 2,041,216 total reads were sequenced for each library. A significant number of four types of bacterial reads was detected in three BALF samples with DNA-sequencing, whereas pathogenic respiratory viruses were detected in seven of 10 patients with RNA-sequencing.Candidate pathogens were detected in three patients in whom etiologic agents were not identified by conventional methods. A summary of the detected pathogens is listed in Table 1. Sequence coverage and depth of each reference bacterial and viral genome are shown in Figures 1 and 2, respectively. The complete genome of enterovirus D68 was identified in two patients without underlying diseases, and phylogenetic analysis suggested that both strains belong to subclade B3, which is an epidemic strain that has spread worldwide in recent years. Conclusion We demonstrated the utility of the NGS-based approach for detection of candidate pathogens in BALF from pediatric patients with severe respiratory failure. Our results suggest that NGS can be applied for comprehensive molecular diagnostics as well as surveillance of pathogens in the field of infectious diseases. Disclosures All authors: No reported disclosures.


Author(s):  
Jeffrey D Jenks ◽  
Juergen Prattes ◽  
Johanna Frank ◽  
Birgit Spiess ◽  
Sanjay R Mehta ◽  
...  

Abstract Background The Aspergillus Galactomannan Lateral Flow Assay (LFA) is a rapid test for the diagnosis of invasive aspergillosis (IA) that has been almost exclusively evaluated in patients with hematologic malignancies. An automated digital cube reader that allows for quantification of results has recently been added to the test kits. Methods We performed a retrospective multicenter study on bronchoalveolar lavage fluid (BALF) samples obtained from 296 patients with various underlying diseases (65% without underlying hematological malignancy) who had BALF galactomannan (GM) ordered between 2013 and 2019 at the University of California, San Diego, the Medical University of Graz, Austria, and the Mannheim University Hospital, Germany. Results Cases were classified as proven (n = 2), probable (n = 56), putative (n = 30), possible (n = 45), and no IA (n = 162). The LFA showed an area under the curve (AUC) of 0.865 (95% confidence interval [CI] .815–.916) for differentiating proven/probable or putative IA versus no IA, with a sensitivity of 74% and a specificity of 83% at an optical density index cutoff of 1.5. After exclusion of GM as mycological criterion for case classification, diagnostic performance of the LFA was highly similar to GM testing (AUC 0.892 vs 0.893, respectively). LFA performance was consistent across different patient cohorts and centers. Conclusions In this multicenter study the LFA assay from BALF demonstrated good diagnostic performance for IA that was consistent across patient cohorts and locations. The LFA may serve a role as a rapid test that may replace conventional GM testing in settings where GM results are not rapidly available.


Author(s):  
Buyun Shi ◽  
Zhi Xia ◽  
Wen Tang ◽  
Chenguang Qin ◽  
Ying Cheng ◽  
...  

Abstract Invasive pulmonary aspergillosis (IPA) is a serious infectious disease with high mortality. However, the rapid diagnosis of IPA remains difficult since the microbiological evidence is difficult to obtain or time-consuming. Thus, we attempted to rapidly diagnose two pediatric cases with respiratory failure due to IPA via bronchoalveolar lavage fluid with Calcofluor White fluorescence staining, which has rarely been used before.


Sign in / Sign up

Export Citation Format

Share Document