scholarly journals The dynamics of dual-magma-chamber system during volcanic eruptions inferred from physical modeling

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Tomofumi Kozono

AbstractA magma plumbing system with dual magma chambers beneath active volcanoes is commonly observed through petrological and geophysical measurements. This paper developed a physical model for the dynamics of a dual-magma-chamber system during volcanic eruptions. The model consists of the plumbing system where two elastically deformable magma chambers are connected in series with non-deformable conduits. Based on this model, we obtained an analytical solution that describes temporal changes in pressures at the two chambers accompanied by the eruption. The analytical solution showed that the feature of the chamber pressure changes is mainly controlled by two non-dimensional numbers $$C'$$ C ′ and $$\Omega '$$ Ω ′ . Here, $$C'$$ C ′ is the ratio of the parameter controlling the magnitude of pressure change in the shallower chamber to that in the deeper chamber, and $$\Omega '$$ Ω ′ is the ratio of conduit’s conductivity (inverse of resistivity to magma flow) between the shallower chamber and the surface to that between the chambers. For smaller $$C'$$ C ′ and $$\Omega '$$ Ω ′ , the shallower chamber’s pressure is kept constant during the decrease in the pressure at the deeper chamber in the initial phase of the eruption. This corresponds to a deformation pattern commonly observed in some eruptions, in which the deflation of the deeper chamber was predominant. The estimation of $$C'$$ C ′ and $$\Omega '$$ Ω ′ based on the parameters related to magma properties and geometries of the chambers and the conduits revealed that the smaller $$C'$$ C ′ and $$\Omega '$$ Ω ′ conditions are satisfied under realistic magmatic and geological parameters. This indicates that the magma dynamics in the dual-chamber system generally cause the dominance of the deeper chamber’s deflation.

Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 431-435 ◽  
Author(s):  
Meredith Townsend ◽  
Christian Huber

Abstract We present a model for a coupled magma chamber–dike system to investigate the conditions required to initiate volcanic eruptions and to determine what controls the size of eruptions. The model combines the mechanics of dike propagation with internal chamber dynamics including crystallization, volatile exsolution, and the elastic response of the magma and surrounding crust to pressure changes within the chamber. We find three regimes for dike growth and eruptions: (1) below a critical magma chamber size, eruptions are suppressed because chamber pressure drops to lithostatic before a dike reaches the surface; (2) at an intermediate chamber size, the erupted volume is less than the dike volume (“dike-limited” eruption regime); and (3) above a certain chamber size, dikes can easily reach the surface and the erupted volume follows a classic scaling law, which depends on the attributes of the magma chamber (“chamber-limited” eruption regime). The critical chamber volume for an eruption ranges from ∼0.01 km3 to 10 km3 depending on the water content in the magma, depth of the chamber, and initial overpressure. This implies that the first eruptions at a volcano likely are preceded by a protracted history of magma chamber growth at depth, and that the crust above the magma chamber may have trapped several intrusions or “failed eruptions.” Model results can be combined with field observations of erupted volume, pressure, and crystal and volatile content to provide tighter constraints on parameters such as the eruptible chamber size.


2020 ◽  
Author(s):  
Ivan Utkin ◽  
Oleg Melnik

<p>The main mechanism of transport of magma in the Earth’s crust is the formation of cracks, or dikes, through which the melt moves towards the surface under the action of buoyancy forces and tectonic stresses. Due to the structural features of the crust or external stress fields, dikes often do not reach the surface, but penetrate the localized region in which the rocks melt, leading to the formation of magmatic chambers, whose volume can exceed thousands of cubic kilometers. We present a model of the formation of a magma chamber during the intrusion of dikes at a given flow rate. The model is based on the solution of heat equation and considers the actual melting diagrams of magma and rocks. It Is shown that, in case of magmatic fluxes typical of island arc volcanoes, magma chambers are formed over hundreds of years from the beginning of magma intrusion. The influence of the magma flow rate, the size of the dikes and their orientation on the volume of the formed magma chamber and its shape was investigated. The size of the chamber significantly exceeds the area of dike intrusion due to the displacement of magma and rocks of the crust, their heating up and melting. To calculate displacement of rock and magma in a numerical simulation, a hybrid method based on PIC/FLIP interpolation is developed, making it possible to avoid unphysical mixing due to numerical dissipation, thus preserving the fine details of the formed magma chamber.</p><p>This work was supported by RFBR, project number 18-01-00352</p>


2017 ◽  
Vol 12 (5) ◽  
pp. 932-943 ◽  
Author(s):  
Keita Chiba ◽  
Hideki Ueda ◽  
Toshikazu Tanada ◽  
◽  

Mt. Tarumae is an active volcano located in the southeast of the Shikotsu caldera, Hokkaido, Japan. Recently, crustal expansion occurred in 1999–2000 and 2013 near the summit of Mt. Tarumae, with a M5.6 earthquake recorded west of the summit on July 8, 2014. In this study, we determined hypocenter distributions and performed b-value analysis for the period between August 1, 2014 and August 12, 2016 to improve our understanding of the geometry of the magma system beneath the summit of Mt. Tarumae. Hypocenters were mainly distributed in two regions: 3–5 km west of Mt. Tarumae, and beneath the volcano. We then determined b-value distributions. Regions with relatively high b-values (∼1.3) were located at depths of –0.5 to 2.0 km beneath the summit and at depths greater than 6.0 km about 1.5–3.0 km northwest of the summit, whereas a region with relatively low b-values (∼0.6) was located at depths of 2.0–6.0 km beneath the summit. Based on comparison of the b-value distributions with other geophysical observations, it was found that the high b-value region from –0.5 to 2.0 km in depth corresponded to regions of lower resistivity, positive self-potential anomaly, and an inflation source detected in 1999–2000. Therefore, it is inferred that this region was generated by crustal heterogeneity, a decrease in effective normal stress, and change of frictional properties caused by the development of faults and fissures and the circulation of hydrothermal fluids. On the other hand, the inflation source detected in 2013 was located near the boundary between the low b-value region beneath the summit and the deeper high b-value region about 1.5–3.0 km northwest of the summit. Studies of other volcanoes have suggested that such high b-values likely correspond to the presence of a magma chamber. Based on the deeper high b-value region estimated in this study, the magma chamber is inferred to be located at depths greater than 6.0 km about 1.5–3.0 km northwest of the summit. Thus, these findings contribute to our understanding of the magma plumbing system beneath the summit of Mt. Tarumae.


2021 ◽  
Vol 38 (1) ◽  
pp. 29-42
Author(s):  
María del Sol Hernández-Bernal ◽  
Pedro Corona-Chávez ◽  
Noemí Trujillo-Hernández ◽  
Consuelo Macías-Romo ◽  
Dante Jaime Morán-Zenteno ◽  
...  

Relevant data on the structure and composition of the crystalline basement in Central México can be found by means of plutonic, metamorphic, and sedimentary xenoliths transported by Neogene and Quaternary volcanic eruptions within the Trans-Mexican Volcanic Belt (TMVB). We present detailed major oxide and trace elements concentrations, isotopic analysis and thermobarometric estimations for a granitic xenolith found in an Early Miocene ignimbrite in Cuitzeo Lake, Michoacán. The xenolith is a calc-alkaline quartz-plagioclase-K-feldspar-biotite-amphibole granite-monzogranite with 73.7 wt.% SiO2. Trace element and isotopic signatures are compatible with a volcanic arc signature. According to amphibole-plagioclase pairs and Ti-in-zircon thermobarometry, the studied xenolith suggests that the granitic system crystallized between 655–737 °C and 1.3–1.9 kbar. U-Pb isotopic analyses of zircon grains from this rock have provided a concordia age of 20.76 ± 0.11 Ma. The presence of granitic xenoliths in Quaternary eruptions produced by the TMVB are not rare. However, this is the first zircon age of a Miocene granitic rock showing evidence of the shallow plutonic counterpart of the magma plumbing system of the Early Miocene (~23 to ~16 Ma) Mil Cumbres - Angangueo voluminous, andesitic-dacitic-rhyolitic episode. Implications for faulting, erosion, and Miocene-Pliocene ignimbrite emplacement in Cuitzeo region are also discussed.


2012 ◽  
Author(s):  
S. Minami ◽  
M. Iguchi ◽  
H. Mikada ◽  
T. Goto ◽  
J. Takekawa

2021 ◽  
Author(s):  
César Daniel Castro ◽  
Miriam Christina Reiss ◽  
Arne Spang ◽  
Philip Hering ◽  
Luca de Siena ◽  
...  

<p>How well can geophysical methods image magmatic systems? Geophysical methods are commonly used to image magmatic systems; however, synthetic studies which give insights into the resolution of such methods and their interpretational scope are rare. Gravity anomalies, magnetotelluric, seismological and geodynamical modelling all have a different sensitivity to the rock parameters and are thus likely complementary methods. Our study aims to better understand their interplay by performing joint modelling of a synthetic magmatic system.  Our model setup of a magma chamber is inspired by seismological observations at the Natron plumbing system including active volcano Oldoinyo Lengai within the East African Rift system. The geodynamic modelling is guided by shear-wave velocity anomalies and it is constrained by a large Bouguer gravity anomaly which is modelled by a voxel-based gravity code. It yields the 3D distribution of several geological parameters (pressure, temperature, stress, density, rock type). The parameters are converted into a 3D resistivity distribution. By 3D forward modelling including the topography, synthetic MT transfer functions (phase tensor, induction vectors) are calculated for a rectangular grid of 441 sites covering the area. The variation of geodynamic parameters and/or petrological relations alters the related resistivity distribution and thus yields the sensitivity of MT responses to geodynamic parameters. In turn, MT observations may constrain geodynamic modelling by inverting MT transfer functions. The inversion is performed allowing for the recent seismicity distribution beneath the Natron plumbing system, assuming that active seismic areas are related to enhanced resistivity. The inversion is performed for a realistic distribution (in view of logistic accessibility) of about 40 MT sites.</p><p>By combining multiple forward models, this study yields insights into the sensitivity of different observables and thus provides a valuable base on how MT, gravity and seismological observations can help imaging a complex geological setting.</p>


2018 ◽  
Vol 6 ◽  
Author(s):  
Takeshi Kuritani ◽  
Azusa Yamaguchi ◽  
Sayuki Fukumitsu ◽  
Mitsuhiro Nakagawa ◽  
Akiko Matsumoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document