scholarly journals Imaging of a serpentinite complex in the Kamuikotan Zone, northern Japan, from magnetotelluric soundings

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hiroshi Ichihara ◽  
Toru Mogi ◽  
Toshihiro Uchida ◽  
Hideyuki Satoh ◽  
Yusuke Yamaya ◽  
...  

AbstractWe conducted magnetotelluric measurements to investigate a large serpentinite complex in the northern Kamuikotan Zone that intruded a Cretaceous–Paleocene forearc sedimentary sequence. The resistivity model we derived by three-dimensional inversion clearly shows a low-resistivity zone beneath the outcrop of the serpentinite complex. We interpret the low-resistivity zone to represent aqueous pore fluid within a serpentinite mélange derived from the subducting Pacific plate or mantle wedge. Previous geological studies in the area have shown that the serpentinite mélange had uplifted during the early Pleistocene. They indicate that the ultramafic rocks and aqueous fluids have continued to rise in the area. The uplifting serpentinite body might have formed a zone enriched in pore fluid that promoted the occurrence of a previously identified intra-plate slow slip event. These results demonstrate the important role of fluid transport during tectonic processes related to uplift in subduction zones.

2021 ◽  
Author(s):  
Hiroshi Ichihara ◽  
Toru Mogi ◽  
Toshihiro Uchida ◽  
Hideyuki Satoh ◽  
Yusuke Yamaya ◽  
...  

Abstract We conducted magnetotelluric measurements to investigate a large serpentinite complex in the northern Kamuikotan zone that intruded a Cretaceous–Paleocene forearc sedimentary sequence. The resistivity model we derived by three-dimensional inversion clearly shows a low-resistivity zone beneath the outcrop of the serpentinite complex. We interpret the low-resistivity zone to represent aqueous pore fluid within a serpentinite mélange derived from the subducting Pacific plate or mantle wedge. Previous geological studies in the area have shown that the serpentinite mélange had uplifted during the early Pleistocene. They indicate that the ultramafic rocks and aqueous fluids have continued to rise in the area. The uplifting serpentinite body might have formed a zone enriched in pore fluid that promoted the occurrence of a previously identified intra-plate slow slip event. These results demonstrate the important role of fluid transport during tectonic processes related to uplift in subduction zones.


2020 ◽  
Author(s):  
Frederique Rolandone ◽  
Jean-Mathieu nocquet ◽  
Patricia Mothes ◽  
Paul Jarrin ◽  
Mathilde Vergnolle

<p>In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.</p>


1985 ◽  
Vol 107 (3) ◽  
pp. 240-248 ◽  
Author(s):  
M. R. Back ◽  
Y. I. Cho ◽  
L. H. Back

An in-vitro, steady flow investigation was conducted in a hollow, transparent vascular replica of the profunda femoris branch of man for a range of physiological flow conditions. The replica casting tested was obtained from a human cadaver and indicated some plaque formation along the main lumen and branch. The flow visualization observations and measured pressure distributions indicated the highly three-dimensional flow characteristics with arterial curvature and branching, and the important role of centrifugal effects in fluid transport mechanisms.


2020 ◽  
Author(s):  
Pierre Romanet ◽  
Florent Aden-Antoniow ◽  
Satoshi Ide

<p>The relationship between slow earthquake and regular earthquake is fundamental question in seismology. It was already shown that some slow slip event may have led to some megathrust event. In return, passing surface wave from earthquake may also trigger tremors and slow slip event. Documenting these possible triggering effects between slow and fast events is of primary importance to understand them.</p><p>In this study we will focus more particularly on Marlborough region, in a region that was subject to the Mw 7.8 2016 Kaikoura earthquake. Two years before Kaikoura earthquake, we observed a Northeast to Southwest migration of tremors, getting closer to the hypocenter of Kaikoura earthquake. Despite being speculative, this may indicate that a slow slip event is happening shortly before Kaikoura earthquake, which is also supported by a small signal in two GPS stations nearby. After the earthquake, the rate of tremors increased in the region. Studying the relationship between tremors and the Kaikoura earthquake may provide some information on the role of the subduction in the region, as well as provide a new documented interaction of slow earthquakes with a crustal earthquake.</p><p>To detect and locate tremors, we use broadband and shortband velocity traces from the GeoNet network. The traces are bandpass filtered between 2-8Hz, and transform into envelope. Then we apply a classic cross-correlation technic to detect and locate the events. To remove unexpected events (i.e.: earthquakes), we used a criteria base on seismic energy and duration. Finally, we manually check each velocity traces and spectrograms.</p>


2021 ◽  
Author(s):  
Vasiliki Mouslopoulou ◽  
Gian Maria Bocchini ◽  
Simone Cesca ◽  
Vasso Saltogianni ◽  
Jonathan Bedford ◽  
...  

<p>The month-to-year-long deformation of the Earth’s crust where active subduction zones terminate is poorly explored. Here we report on a multidisciplinary dataset that captures the synergy of slow-slip events, earthquake swarms and fault-interactions during the ~5 years leading up to the 2018 M<sub>w</sub> 6.9 Zakynthos Earthquake at the western termination of the Hellenic Subduction System (HSS). It appears that this long-lasting preparatory phase initiated due to a slow-slip event that lasted ~4 months and released strain equivalent to a ~M<sub>w</sub> 6.3 earthquake. We propose that the slow-slip event, which is the first to be reported in the HSS, tectonically destabilised the upper 20-40 km of the crust, producing alternating phases of seismic and aseismic deformation, including intense microseismicity (M<4) on neighbouring faults, earthquake swarms in the epicentral area of the M<sub>w</sub> 6.9 earthquake ~1.5 years before the main event, another episode of slow-slip immediately preceding the mainshock and, eventually, the large (M<sub>w </sub>6.9) Zakynthos Earthquake. Tectonic instability in the area is evidenced by a prolonged (~4 years) period of overall suppressed b-values (<1) and strong earthquake interactions on discrete strike-slip, thrust and normal faults. We propose that composite faulting patterns accompanied by alternating (seismic/aseismic) deformation styles may characterise multi-fault subduction-termination zones and may operate over a range of timescales (from individual earthquakes to millions of years).</p>


2015 ◽  
Vol 37 ◽  
pp. 61-64
Author(s):  
Marco Scambelluri ◽  
Enrico Cannaò ◽  
Mattia Gilio ◽  
Marguerite Godard

1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Miriam Aparicio

This study tests some hypotheses included in the psycho-social-communicational paradigm, which emphasizes the cognitive effects of the media and the role of the psychosocial subject as the recipient


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


Sign in / Sign up

Export Citation Format

Share Document