scholarly journals Combined approach to estimate the depth of the magma surface in a shallow conduit at Aso volcano, Japan

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kyoka Ishii ◽  
Akihiko Yokoo

AbstractOpen-vent volcanoes provide opportunities to perform various methods of observation that can be used to study shallow plumbing systems. The depth of the magma–air interface in the shallow portion of the conduit can be used as an indicator of the volcanic activity of open-vent volcanoes. Although there are many methods used to estimate the depth, most of them cannot constrain the depth to a narrow range due to other unknown parameters. To constrain the depth more accurately, we combine two methods commonly used for estimating the depth of the magma–air interface. They consider the acoustic resonant frequency and the time delay of arrivals between the seismic and infrasound signals of explosions. Both methods have the same unknown parameters: the depth of the magma–air interface and the sound velocity inside the vent. Therefore, these unknowns are constrained so that both the observed resonant frequency and time delay can be explained simultaneously. We use seismo-acoustic data of Strombolian explosions recorded in the vicinity of Aso volcano, Japan, in 2015. The estimated depths and the sound velocities are 40–200 m and 300–680 m/s, respectively. The depth range is narrower than that of a previous study using only the time delay of arrivals. However, only a small amount of the observed data can be used for the estimation, as the rest of the data cannot provide realistic depths or sound velocities. In particular, a wide distribution of the observed time delay data cannot be explained by our simple assumptions. By considering a more complicated environment of explosions, such as source positions of explosions distributed across the whole surface of a lava pond in the conduit, most of the observed data can be used for estimation. This suggests that the factor controlling the observed time delay is not as simple as generally expected. Graphic abstract

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Wenjiao Sun ◽  
Guojian Ren ◽  
Yongguang Yu ◽  
Xudong Hai

This paper investigated the global synchronization of fractional-order memristive neural networks (FMNNs). To deal with the effect of reaction-diffusion and time delay, fractional partial and comparison theorem are introduced. Based on the set value mapping theory and Filippov solution, the activation function is extended to discontinuous case. Adaptive controllers with a compensator are designed owing to the existence of unknown parameters, with the help of Gronwall–Bellman inequality. Numerical simulation examples demonstrate the availability of the theoretical results.


2020 ◽  
Vol 8 (9) ◽  
pp. 694
Author(s):  
Linfeng Chen ◽  
Xueshen Cao ◽  
Shiyan Sun ◽  
Jie Cui

In the present study, the effects of the draft ratio of the floating body on the fluid oscillation in the gap are investigated by using the viscous fluid model. Numerical simulations are implemented by coupling wave2Foam and OpenFOAM. The Volume of Fluid (VOF) model is used to capture the free surface waves. It is verified that the numerical results agree well with the experimental and other results. It is firstly found that, within the water depth range investigated in the present study, the depth of the wave tank has a significant effect on the numerical results. As the depth of the wave tank increases, the oscillation amplitude of the narrow-gap fluid largely decreases and the resonant frequency of the fluid oscillation in the narrow gap increases. The results also reveal that the draft ratio of floating bodies has a significant nonlinear influence on the resonant frequency and on the oscillation amplitude of the fluid in the narrow gap. With an increase in the draft of either the floating body on the wave side or the one on the back wave side, the resonant frequency decreases. The increase in the draft of the floating body on the wave side causes an increase in the reflection wave coefficient and leads to a drop in the fluid oscillation amplitude, and the increase in the draft of the floating body on the back wave side triggers a decrease in the reflection wave coefficient and results in an increase in the fluid oscillation amplitude. Meanwhile, the viscous dissipation induced by the fluid viscosity synchronously increases with the oscillation amplitude of the fluid in the increasing gap. Moreover, it is found that the draft ratio mainly affects the horizontal force of the floating body on the back wave side and that the highest calculated force increases with the draft ratio.


Optik ◽  
2016 ◽  
Vol 127 (13) ◽  
pp. 5506-5514 ◽  
Author(s):  
Israr Ahmad ◽  
Azizan Bin Saaban ◽  
Adyda Binti Ibrahim ◽  
Mohammad Shahzad ◽  
M. Mossa Al-sawalha

Author(s):  
Yang Zhu ◽  
Miroslav Krstic

This chapter analyzes single-input systems with full relative degree. The primary approach is based on the adaptive backstepping control with Kreisselmeier-filters. In output-feedback adaptive problems, the relative degree plays a major role in determining the difficulty of a problem. The chapter focuses on a special class of LTI systems with its relative degree being equal to its system dimension. Moreover, in this chapter the actuator state is assumed to be measured. The chapter also presents a combination of prediction-based boundary control with adaptive backstepping to address unknown parameters and time delay. It then develops two Lyapunov-based identifiers to estimate unknown plant parameters and actuator time delay.


2016 ◽  
Vol 30 (01) ◽  
pp. 1550263 ◽  
Author(s):  
Shuo Zhang ◽  
Yongguang Yu ◽  
Guoguang Wen ◽  
Ahmed Rahmani

The lag-generalized synchronization of coupled time-delay chaotic systems with unknown parameters and stochastic perturbation is investigated. Based on the LaSalle-type invariance principle of stochastic differential equation, the synchronization is realized by analyzing stochastic stability of the error system. In order to achieve the synchronization, the unknown parameter update laws and the control laws are proposed. At last, two numerical examples are presented to show the effectiveness of the obtained theoretical results.


Author(s):  
Yifei Hu ◽  
Jinbo Wu

An online identification method that can simultaneously estimate the unknown system parameter and the unknown time-delay is proposed. Firstly, with the help of Lagrange mean value theorem, the system with time-delay can be transformed into two terms that can be identified by modified least-square algorithm and one term that represents an approximate error. Then, a modified least-square algorithm is introduced to estimate all the unknown parameters in case of external disturbances. Additionally, an restrain term are added in the covariance matrix to enhance the robustness to deal with the approximate error which is related to the estimated error of system parameter and time-delay. Also, the boundedness of the estimation error is guaranteed via Lyapunov stability theory. Finally, the effectivity of the proposed method is verified by simulations results.


2021 ◽  
Author(s):  
F. Gant ◽  
G. Ghirardo ◽  
A. Cuquel ◽  
M. R. Bothien

Abstract The stability of thermoacoustic systems is often regulated by the time delay between acoustic perturbations and corresponding heat release fluctuations. An accurate estimate of this value is of great importance in applications, since even small modifications can introduce significant changes in the system behavior Different studies show that the nonlinear delayed dynamics typical of these systems can be well captured with low-order models. In the present work, a method is introduced to estimate the most likely value of the time delay of a single thermoacoustic mode from a measured acoustic pressure signal. The mode of interest is modeled by an oscillator equation, with a nonlinear delayed forcing term modeling the deterministic flame contribution and an additive white Gaussian noise to embed the stochastic combustion noise. Additionally, other thermoacoustic relevant parameters are estimated. The model accounts for a flame gain, for a flame saturation coefficient, for a linear acoustic damping and for the background combustion noise intensity. The pressure data time series is statistically analyzed and the set of unknown parameters is identified. Validation is performed with respect to synthetically generated time series and low order model simulations, for which the underlying delay is known a priori. A discussion follows about the accuracy of the method, in particular a comparison with existing methods is drawn.


Sign in / Sign up

Export Citation Format

Share Document