scholarly journals On the relationship between energy input to the ionosphere and the ion outflow flux under different solar zenith angles

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Naritoshi Kitamura ◽  
Kanako Seki ◽  
Kunihiro Keika ◽  
Yukitoshi Nishimura ◽  
Tomoaki Hori ◽  
...  

AbstractThe ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT (FAST) satellite at 3000–4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared to the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm−2 s−1). The slopes of relations between the Poynting fluxes and outflowing ion number fluxes show no clear dependence on the solar zenith angle. Intense ion outflow events (> 108 cm−2 s−1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature). Graphical abstract

2021 ◽  
Author(s):  
Naritoshi Kitamura ◽  
Kanako Seki ◽  
Kunihiro Keika ◽  
Yukitoshi Nishimura ◽  
Tomoaki Hori ◽  
...  

Abstract The ionosphere is one of the important sources for magnetospheric plasma, particularly for heavy ions with low charge states. We investigate the effect of solar illumination on the number flux of ion outflow using data obtained by the Fast Auroral SnapshoT satellite at 3000–4150 km altitude from 7 January 1998 to 5 February 1999. We derive empirical formulas between energy inputs and outflowing ion number fluxes for various solar zenith angle ranges. We found that the outflowing ion number flux under sunlit conditions increases more steeply with increasing electron density in the loss cone or with increasing precipitating electron density (> 50 eV), compared with the ion flux under dark conditions. Under ionospheric dark conditions, weak electron precipitation can drive ion outflow with small averaged fluxes (~ 107 cm− 2 s− 1). The slopes of relations between the DC and Alfvén Poynting fluxes and outflowing ion number fluxes show no clear dependence on solar zenith angle. Intense ion outflow events (> 108 cm− 2 s− 1) occur mostly under sunlit conditions (solar zenith angle < 90°). Thus, it is presumably difficult to drive intense ion outflows under dark conditions, because of a lack of the solar illumination (low ionospheric density and/or small scale height owing to low plasma temperature).


2009 ◽  
Vol 27 (10) ◽  
pp. 3713-3724 ◽  
Author(s):  
A. Osepian ◽  
S. Kirkwood ◽  
P. Dalin ◽  
V. Tereschenko

Abstract. Accurate measurements of electron density in the lower D-region (below 70 km altitude) are rarely made. This applies both with regard to measurements by ground-based facilities and by sounding rockets, and during both quiet conditions and conditions of energetic electron precipitation. Deep penetration into the atmosphere of high-energy solar proton fluxes (during solar proton events, SPE) produces extra ionisation in the whole D-region, including the lower altitudes, which gives favourable conditions for accurate measurements using ground-based facilities. In this study we show that electron densities measured with two ground-based facilities at almost the same latitude but slightly different longitudes, provide a valuable tool for validation of model computations. The two techniques used are incoherent scatter of radio waves (by the EISCAT 224 MHz radar in Tromsø, Norway, 69.6° N, 19.3° E), and partial reflection of radio-waves (by the 2.8 MHz radar near Murmansk, Russia, 69.0° N, 35.7° E). Both radars give accurate electron density values during SPE, from heights 57–60 km and upward with the EISCAT radar and between 55–70 km with the partial reflection technique. Near noon, there is little difference in the solar zenith angle between the two locations and both methods give approximately the same values of electron density at the overlapping heights. During twilight, when the difference in solar zenith angles increases, electron density values diverge. When both radars are in night conditions (solar zenith angle >99°) electron densities at the overlapping altitudes again become equal. We use the joint measurements to validate model computations of the ionospheric parameters f+, λ, αeff and their variations during solar proton events. These parameters are important characteristics of the lower ionosphere structure which cannot be determined by other methods.


NASPA Journal ◽  
1998 ◽  
Vol 35 (4) ◽  
Author(s):  
Jackie Clark ◽  
Joan Hirt

The creation of small communities has been proposed as a way of enhancing the educational experience of students at large institutions. Using data from a survey of students living in large and small residences at a public research university, this study does not support the common assumption that small-scale social environments are more conducive to positive community life than large-scale social environments.


2021 ◽  
Vol 42 (11) ◽  
pp. 4224-4240
Author(s):  
Gyuyeon Kim ◽  
Yong-Sang Choi ◽  
Sang Seo Park ◽  
Jhoon Kim

2021 ◽  
Vol 20 (2) ◽  
pp. 265-274
Author(s):  
Angela C. G. B. Leal ◽  
Marcelo P. Corrêa ◽  
Michael F. Holick ◽  
Enaldo V. Melo ◽  
Marise Lazaretti-Castro

2016 ◽  
Vol 283 (1823) ◽  
pp. 20152404 ◽  
Author(s):  
Jorge Velázquez ◽  
Robert B. Allen ◽  
David A. Coomes ◽  
Markus P. Eichhorn

Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts.


2007 ◽  
Vol 64 (2) ◽  
pp. 656-664 ◽  
Author(s):  
Shouting Gao ◽  
Yushu Zhou ◽  
Xiaofan Li

Abstract Effects of diurnal variations on tropical heat and water vapor equilibrium states are investigated based on hourly data from two-dimensional cloud-resolving simulations. The model is integrated for 40 days and the simulations reach equilibrium states in all experiments. The simulation with a time-invariant solar zenith angle produces a colder and drier equilibrium state than does the simulation with a diurnally varied solar zenith angle. The simulation with a diurnally varied sea surface temperature generates a colder equilibrium state than does the simulation with a time-invariant sea surface temperature. Mass-weighted mean temperature and precipitable water budgets are analyzed to explain the thermodynamic differences. The simulation with the time-invariant solar zenith angle produces less solar heating, more condensation, and consumes more moisture than the simulation with the diurnally varied solar zenith angle. The simulation with the diurnally varied sea surface temperature produces a colder temperature through less latent heating and more IR cooling than the simulation with the time-invariant sea surface temperature.


2000 ◽  
Vol 18 (9) ◽  
pp. 1043-1053 ◽  
Author(s):  
A. M. Smith ◽  
S. E. Pryse ◽  
L. Kersley

Abstract. Observations by the EISCAT Svalbard radar in summer have revealed electron density enhancements in the magnetic noon sector under conditions of IMF Bz southward. The features were identified as possible candidates for polar-cap patches drifting anti-Sunward with the plasma flow. Supporting measurements by the EISCAT mainland radar, the CUTLASS radar and DMSP satellites, in a multi-instrument study, suggested that the origin of the structures lay upstream at lower latitudes, with the modulation in density being attributed to variability in soft-particle precipitation in the cusp region. It is proposed that the variations in precipitation may be linked to changes in the location of the reconnection site at the magnetopause, which in turn results in changes in the energy distribution of the precipitating particles.Key words: Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; polar ionosphere)


Sign in / Sign up

Export Citation Format

Share Document