scholarly journals Direct comparison of brain [18F]FDG images acquired by SiPM-based and PMT-based PET/CT: phantom and clinical studies

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tube (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Contrast was calculated from images acquired from a Hoffman 3D brain phantom, and image noise and uniformity were calculated from images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then the mean standardized uptake values (SUVmean) and Z-score were calculated using MIMneuro and CortexID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 19.2, 3.5, and − 40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of contrast > 55%, CV ≤ 15%, and SD ≤ 0.0249, respectively. Contrast was 70.0% for SiPM-PET without TOF and 59.5% for PMT-PET without TOF. The TOF improved contrast by 3.5% in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was increased. The hypometabolic area in statistical maps was reduced and localized using SiPM-PET. The trend was independent of whether the images were derived from controls or patients. Conclusions The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-scores were higher in SiPM-PET than PMT-PET due to improved PVE. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis because SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.

2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background: Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tube (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies.Methods: Contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated using MIMneuro and CortexID Suite, respectively.Results: Image contrast, image noise, and uniformity in SiPM-PET changed 19.2%, 3.5%, and -40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of contrast > 55%, CV ≤ 15% and SD ≤ 0.0249, respectively. Contrast was 70.0% for SiPM-PET without TOF and 59.5% for PMT-PET without TOF. The TOF improved contrast by 3.5% in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was increased. The hypometabolic area in statistical maps was reduced and localized using SiPM-PET. The trend was independent of whether the images were derived from controls or patients.Conclusions: The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-scores were higher in SiPM-PET than PMT-PET due to improved PVE. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis because SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.


2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background: The silicon photomultiplier-positron emission tomography (SiPM-PET) developed by GE Healthcare has better sensitivity, spatial resolution, and timing resolution than photomultiplier tubes (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods: Image contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from pooled images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated by MIMneuro and CortexID Suite, respectively. Results: Image contrast, image noise, and uniformity in SiPM-PET changed 19.2%, 3.5%, and -40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of > 55%, ≤ 15% and ≤ 0.0249, respectively. The contrast in SiPM-PET was slightly improved using TOF. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was raised. The area of hypometabolism in statistical maps was reduced and localized by SiPM-PET compared with PMT-PET regardless of whether the images were derived from controls or patients. Conclusions: The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-score in SiPM-PET was higher than PMT-PET due to improving the PVEs. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis becausethe SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.


2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tubes (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Image contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from pooled images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 individuals. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated by MIMneuro and Cortex ID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 27.5%, -2.1%, and − 138.2% from PMT-PET, respectively. These physical indices of SiPM-PET satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of > 55%, ≤ 15% and ≤ 0.0249, respectively. The residual background count was reduced with time-of-flight algorithm especially in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in Cortex ID Suite was raised. Conclusions The better spatial and timing resolution, and sensitivity in SiPM-PET were contributed to better image contrast, image noise, and uniformity on brain [18F]FDG images. SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-score in SiPM-PET was higher than PMT-PET. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on the statistical image analysis because the SiPM-PET was more localized the distribution of glucose metabolism on Z-score maps.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johan Economou Lundeberg ◽  
Jenny Oddstig ◽  
Ulrika Bitzén ◽  
Elin Trägårdh

Abstract Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhifang Wu ◽  
Binwei Guo ◽  
Bin Huang ◽  
Xinzhong Hao ◽  
Ping Wu ◽  
...  

AbstractTo evaluate the quantification accuracy of different positron emission tomography-computed tomography (PET/CT) reconstruction algorithms, we measured the recovery coefficient (RC) and contrast recovery (CR) in phantom studies. The results played a guiding role in the partial-volume-effect correction (PVC) for following clinical evaluations. The PET images were reconstructed with four different methods: ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), OSEM with TOF and point spread function (PSF), and Bayesian penalized likelihood (BPL, known as Q.Clear in the PET/CT of GE Healthcare). In clinical studies, SUVmax and SUVmean (the maximum and mean of the standardized uptake values, SUVs) of 75 small pulmonary nodules (sub-centimeter group: < 10 mm and medium-size group: 10–25 mm) were measured from 26 patients. Results show that Q.Clear produced higher RC and CR values, which can improve quantification accuracy compared with other methods (P < 0.05), except for the RC of 37 mm sphere (P > 0.05). The SUVs of sub-centimeter fludeoxyglucose (FDG)-avid pulmonary nodules with Q.Clear illustrated highly significant differences from those reconstructed with other algorithms (P < 0.001). After performing the PVC, highly significant differences (P < 0.001) still existed in the SUVmean measured by Q.Clear comparing with those measured by the other algorithms. Our results suggest that the Q.Clear reconstruction algorithm improved the quantification accuracy towards the true uptake, which potentially promotes the diagnostic confidence and treatment response evaluations with PET/CT imaging, especially for the sub-centimeter pulmonary nodules. For small lesions, PVC is essential.


2012 ◽  
Vol 63 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Yung H. Kao ◽  
Siew S. Lim ◽  
Seng C. Ong ◽  
Ajit K. Padhy

Introduction To determine the incidence of fluorine-18-fluorodeoxyglucose (FDG) avid thyroid incidentalomas detected on positron emission tomography (PET) with integrated computed tomography (CT), and correlate the FDG–PET-CT findings to cytology. Methods A total of 942 FDG–PET-CT reports were retrospectively reviewed. Patients with FDG-avid thyroid incidentalomas were further reviewed for correlative cytology. Results The incidence of FDG-avid thyroid incidentalomas is 2.2%. Thyroid malignancies were identified in 3 of 6 patients who underwent cytologic correlation, with a positive predictive value of 50% (95% confidence interval, 14%-86%). The mean maximum standardized uptake values of benign and malignant FDG-avid thyroid incidentalomas were 5.6 and 6.6, respectively. Conclusion A FDG-avid thyroid incidentaloma may predict underlying malignancy. Cytologic assessment should be considered for FDG-avid thyroid incidentalomas.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hao Wang ◽  
Wenwei Zhu ◽  
Shuhua Ren ◽  
Yanyan Kong ◽  
Qi Huang ◽  
...  

BackgroundFibroblast activation protein (FAP) is commonly expressed in activated stromal fibroblasts in various epithelial tumours. Recently, 68Ga-FAPI-04 has been used for tumour imaging in positron emission tomography/computed tomography (PET/CT). This study aimed to compare the diagnostic performances of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in hepatocellular carcinoma (HCC), and to assess factors associated with 68Ga-FAPI-04 uptake in HCC.Materials and MethodsTwenty-nine patients with suspiciously HCC who received both 18F-FDG and 68Ga-FAPI-04 PET/CT were included in this retrospective study. The results were interpreted by two experienced nuclear medicine physicians independently. The maximum and mean standardized uptake values (SUVmax and SUVmean) were measured in the lesions and liver background, respectively. The tumour-to-background ratio (TBR) was then calculated as lesion’s SUVmax divided by background SUVmean.ResultsA total of 35 intrahepatic lesions in 25 patients with HCC were finally involved in the statistical analysis. 68Ga-FAPI-04 PET/CT showed a higher sensitivity than 18F-FDG PET/CT in detecting intrahepatic HCC lesions (85.7% vs. 57.1%, P = 0.002), including in small (≤ 2 cm in diameter; 68.8% vs. 18.8%, P = 0.008) and well- or moderately-differentiated (83.3% vs. 33.3%, P = 0.031) tumors. SUVmax was comparable between 68Ga-FAPI-04 and 18F-FDG (6.96 ± 5.01 vs. 5.89 ± 3.38, P &gt; 0.05), but the TBR was significantly higher in the 68Ga-FAPI-04 group compared with the 18F-FDG group (11.90 ± 8.35 vs. 3.14 ± 1.59, P &lt; 0.001). SUVmax and the TBR in 68Ga-FAPI-04 positive lesions were associated with tumour size (both P &lt; 0.05), but not the remaining clinical and pathological features (all P &gt; 0.05).Conclusions68Ga-FAPI-04 PET/CT is more sensitive than 18F-FDG PET/CT in detecting HCC lesions, and 68Ga-FAPI-04 uptake is correlated mainly with tumour size.


Author(s):  
Franziska Walter ◽  
Constanze Jell ◽  
Barbara Zollner ◽  
Claudia Andrae ◽  
Sabine Gerum ◽  
...  

Abstract Background Target volume definition of the primary tumor in esophageal cancer is usually based on computed tomography (CT) supported by endoscopy and/or endoscopic ultrasound and can be difficult given the low soft-tissue contrast of CT resulting in large interobserver variability. We evaluated the value of a dedicated planning [F18] FDG-Positron emission tomography/computer tomography (PET/CT) for harmonization of gross tumor volume (GTV) delineation and the feasibility of semiautomated structures for planning purposes in a large cohort. Methods Patients receiving a dedicated planning [F18] FDG-PET/CT (06/2011–03/2016) were included. GTV was delineated on CT and on PET/CT (GTVCT and GTVPET/CT, respectively) by three independent radiation oncologists. Interobserver variability was evaluated by comparison of mean GTV and mean tumor lengths, and via Sørensen–Dice coefficients (DSC) for spatial overlap. Semiautomated volumes were constructed based on PET/CT using fixed standardized uptake values (SUV) thresholds (SUV30, 35, and 40) or background- and metabolically corrected PERCIST-TLG and Schaefer algorithms, and compared to manually delineated volumes. Results 45 cases were evaluated. Mean GTVCT and GTVPET/CT were 59.2/58.0 ml, 65.4/64.1 ml, and 60.4/59.2 ml for observers A–C. No significant difference between CT- and PET/CT-based delineation was found comparing the mean volumes or lengths. Mean Dice coefficients on CT and PET/CT were 0.79/0.77, 0.81/0.78, and 0.8/0.78 for observer pairs AB, AC, and BC, respectively, with no significant differences. Mean GTV volumes delineated semiautomatically with SUV30/SUV35/SUV40/Schaefer’s and PERCIST-TLG threshold were 69.1/23.9/18.8/18.6 and 70.9 ml. The best concordance of a semiautomatically delineated structure with the manually delineated GTVCT/GTVPET/CT was observed for PERCIST-TLG. Conclusion We were not able to show that the integration of PET/CT for GTV delineation of the primary tumor resulted in reduced interobserver variability. The PERCIST-TLG algorithm seemed most promising compared to other thresholds for further evaluation of semiautomated delineation of esophageal cancer.


2020 ◽  
Author(s):  
Piotr Slomka

UNSTRUCTURED Background (words 199/200) We aimed to establish the observer repeatability and interscan reproducibility of coronary 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) uptake using a novel semi-automated approach, coronary microcalcification activity (CMA). Methods Patients with multivessel coronary artery disease underwent repeated hybrid PET and computed tomography angiography (CTA) imaging (PET/CTA). CMA was defined as the integrated standardized uptake values (SUV) in the entire coronary tree exceeding 2 standard deviations above the background SUV. Coefficients of repeatability between the same observer (intraobserver repeatability), between 2 observers (interobserver repeatability) and coefficient of reproducibility between 2 scans (interscan reproducibility), were determined at both vessel and patient level. Results In 19 patients, CMA was assessed twice in 43 coronary vessels on two PET/CT scans performed 12±5 days apart. There was excellent intraclass correlation on a per-vessel and per-patient level for intraobserver and interobserver repeatability as well as interscan reproducibility (≥0.991 for all). There was 100% intraobserver, interobserver and interscan agreement for the presence (CMA>0) or absence (CMA=0) of coronary18F-NaF uptake. Mean CMA was 3.12±0.62 with coefficients of repeatability of ≤10% for all measures: intraobserver 0.24 and 0.22, interobserver 0.30 and 0.29 and interscan 0.33 and 0.32 at a per-vessel and per-patient level respectively. Conclusions CMA is a repeatable and reproducible global measure of coronary atherosclerotic activity.


Sign in / Sign up

Export Citation Format

Share Document