scholarly journals Direct comparison of brain [18F]FDG images acquired by SiPM-based and PMT-based PET/CT: phantom and clinical studies

2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background: The silicon photomultiplier-positron emission tomography (SiPM-PET) developed by GE Healthcare has better sensitivity, spatial resolution, and timing resolution than photomultiplier tubes (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods: Image contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from pooled images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated by MIMneuro and CortexID Suite, respectively. Results: Image contrast, image noise, and uniformity in SiPM-PET changed 19.2%, 3.5%, and -40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of > 55%, ≤ 15% and ≤ 0.0249, respectively. The contrast in SiPM-PET was slightly improved using TOF. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was raised. The area of hypometabolism in statistical maps was reduced and localized by SiPM-PET compared with PMT-PET regardless of whether the images were derived from controls or patients. Conclusions: The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-score in SiPM-PET was higher than PMT-PET due to improving the PVEs. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis becausethe SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.

2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background: Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tube (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies.Methods: Contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated using MIMneuro and CortexID Suite, respectively.Results: Image contrast, image noise, and uniformity in SiPM-PET changed 19.2%, 3.5%, and -40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of contrast > 55%, CV ≤ 15% and SD ≤ 0.0249, respectively. Contrast was 70.0% for SiPM-PET without TOF and 59.5% for PMT-PET without TOF. The TOF improved contrast by 3.5% in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was increased. The hypometabolic area in statistical maps was reduced and localized using SiPM-PET. The trend was independent of whether the images were derived from controls or patients.Conclusions: The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-scores were higher in SiPM-PET than PMT-PET due to improved PVE. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis because SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tube (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Contrast was calculated from images acquired from a Hoffman 3D brain phantom, and image noise and uniformity were calculated from images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 controls and 10 patients. All images were separately normalized to a standard [18F]FDG PET template, then the mean standardized uptake values (SUVmean) and Z-score were calculated using MIMneuro and CortexID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 19.2, 3.5, and − 40.0% from PMT-PET, respectively. These physical indices of both PET scanners satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of contrast > 55%, CV ≤ 15%, and SD ≤ 0.0249, respectively. Contrast was 70.0% for SiPM-PET without TOF and 59.5% for PMT-PET without TOF. The TOF improved contrast by 3.5% in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in CortexID Suite was increased. The hypometabolic area in statistical maps was reduced and localized using SiPM-PET. The trend was independent of whether the images were derived from controls or patients. Conclusions The improved spatial resolution and sensitivity of SiPM-PET contributed to better image contrast and uniformity in brain [18F]FDG images. The SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-scores were higher in SiPM-PET than PMT-PET due to improved PVE. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on statistical image analysis because SiPM-PET would localize the distribution of glucose metabolism on Z-score maps.


2020 ◽  
Author(s):  
Kei Wagatsuma ◽  
Muneyuki Sakata ◽  
Kenji Ishibashi ◽  
Akira Hirayama ◽  
Hirofumi Kawakami ◽  
...  

Abstract Background Silicon photomultiplier-positron emission tomography (SiPM-PET) has better sensitivity, spatial resolution, and timing resolution than photomultiplier tubes (PMT)-PET. The present study aimed to clarify the advantages of SiPM-PET in 18F-fluoro-2-deoxy-D-glucose ([18F]FDG) brain imaging in a head-to-head comparison with PMT-PET in phantom and clinical studies. Methods Image contrast was calculated from images acquired from a Hoffman 3D brain phantom and image noise and uniformity were calculated from pooled images acquired from a pool phantom using SiPM- and PMT-PET. Sequential PMT-PET and SiPM-PET [18F]FDG images were acquired over a period of 10 min from 22 individuals. All images were separately normalized to a standard [18F]FDG PET template, then mean standardized uptake values (SUVmean) and Z-score were calculated by MIMneuro and Cortex ID Suite, respectively. Results Image contrast, image noise, and uniformity in SiPM-PET changed 27.5%, -2.1%, and − 138.2% from PMT-PET, respectively. These physical indices of SiPM-PET satisfied the criteria for acceptable image quality published by the Japanese Society of Nuclear Medicine of > 55%, ≤ 15% and ≤ 0.0249, respectively. The residual background count was reduced with time-of-flight algorithm especially in SiPM-PET. The SUVmean using SiPM-PET was significantly higher than PMT-PET and did not correlate with a time delay. Z-scores were also significantly higher in images acquired from SiPM-PET (except for the bilateral posterior cingulate) than PMT-PET because the peak signal that was extracted by the calculation of Z-score in Cortex ID Suite was raised. Conclusions The better spatial and timing resolution, and sensitivity in SiPM-PET were contributed to better image contrast, image noise, and uniformity on brain [18F]FDG images. SiPM-PET offers better quality and more accurate quantitation of brain PET images. The SUVmean and Z-score in SiPM-PET was higher than PMT-PET. [18F]FDG images acquired using SiPM-PET will help to improve diagnostic outcomes based on the statistical image analysis because the SiPM-PET was more localized the distribution of glucose metabolism on Z-score maps.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hans-Jonas Meyer ◽  
Sandra Purz ◽  
Osama Sabri ◽  
Alexey Surov

Multimodal imaging has been increasingly used in oncology, especially in cervical cancer. By using a simultaneous positron emission (PET) and magnetic resonance imaging (MRI, PET/MRI) approach, PET and MRI can be obtained at the same time which minimizes motion artefacts and allows an exact imaging fusion, which is especially important in anatomically complex regions like the pelvis. The associations between functional parameters from MRI and 18F-FDG-PET reflecting different tumor aspects are complex with inconclusive results in cervical cancer. The present study correlates histogram analysis and 18F-FDG-PET parameters derived from simultaneous FDG-PET/MRI in cervical cancer. Overall, 18 female patients (age range: 32–79 years) with histopathologically confirmed squamous cell cervical carcinoma were retrospectively enrolled. All 18 patients underwent a whole-body simultaneous 18F-FDG-PET/MRI, including diffusion-weighted imaging (DWI) using b-values 0 and 1000 s/mm2. Apparent diffusion coefficient (ADC) histogram parameters included several percentiles, mean, min, max, mode, median, skewness, kurtosis, and entropy. Furthermore, mean and maximum standardized uptake values (SUVmean and SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were estimated. No statistically significant correlations were observed between SUVmax or SUVmean and ADC histogram parameters. TLG correlated inversely with p25 (r=−0.486,P=0.041), p75 (r=−0.490,P=0.039), p90 (r=−0.513,P=0.029), ADC median (r=−0.497,P=0.036), and ADC mode (r=−0.546,P=0.019). MTV also showed significant correlations with several ADC parameters: mean (r=−0.546,P=0.019), p10 (r=−0.473,P=0.047), p25 (r=−0.569,P=0.014), p75 (r=−0.576,P=0.012), p90 (r=−0.585,P=0.011), ADC median (r=−0.577,P=0.012), and ADC mode (r=−0.597,P=0.009). ADC histogram analysis and volume-based metabolic 18F-FDG-PET parameters are related to each other in cervical cancer.


Biomedicines ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 159
Author(s):  
Brenda Huska ◽  
Sarah Niccoli ◽  
Christopher P. Phenix ◽  
Simon J. Lees

Significant depots of brown adipose tissue (BAT) have been identified in many adult humans through positron emission tomography (PET), with the amount of BAT being inversely correlated with obesity. As dietary activation of BAT has implications for whole body glucose metabolism, leucine was used in the present study to determine its ability to promote BAT activation resulting in increased glucose uptake. In order to assess this, 2-deoxy-2-(fluorine-18)fluoro-d-glucose (18F-FDG) uptake was measured in C57BL/6 mice using microPET after treatment with leucine, glucose, or both in interscapular BAT (IBAT). Pretreatment with propranolol (PRP) was used to determine the role of β-adrenergic activation in glucose and leucine-mediated 18F-FDG uptake. Analysis of maximum standardized uptake values (SUVMAX) determined that glucose administration increased 18F-FDG uptake in IBAT by 25.3%. While leucine did not promote 18F-FDG uptake alone, it did potentiate glucose-mediated 18F-FDG uptake, increasing 18F-FDG uptake in IBAT by 22.5%, compared to glucose alone. Pretreatment with PRP prevented the increase in IBAT 18F-FDG uptake following the combination of glucose and leucine administration. These data suggest that leucine is effective in promoting BAT 18F-FDG uptake through β-adrenergic activation in combination with glucose.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2399 ◽  
Author(s):  
Xiang Zhou ◽  
Alexander Dierks ◽  
Olivia Kertels ◽  
Samuel Samnick ◽  
Malte Kircher ◽  
...  

Utilizing 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT), we performed this pilot study to evaluate the link between cytogenetic/genomic markers and imaging patterns in relapsed/refractory (RR) multiple myeloma (MM). We retrospectively analyzed data of 24 patients with RRMM who were treated at our institution between November 2018 and February 2020. At the last relapse/progression, patients had been treated with a median of three (range 1–10) lines of therapy. Six (25%) patients showed FDG avid extramedullary disease without adjacency to bone. We observed significantly higher maximum standardized uptake values (SUVmax) in patients harboring del(17p) compared with those without del(17p) (p = 0.025). Moreover, a high SUVmax of >15 indicated significantly shortened progression-free survival (PFS) (p = 0.01) and overall survival (OS) (p = 0.0002). One female patient exhibited biallelic TP53 alteration, i.e., deletion and mutation, in whom an extremely high SUVmax of 37.88 was observed. In summary, this pilot study suggested a link between del(17p)/TP53 alteration and high SUVmax on 18F-FDG PET/CT in RRMM patients. Further investigations are highly warranted at this point.


Medicine ◽  
2018 ◽  
Vol 97 (42) ◽  
pp. e12817
Author(s):  
Kevser Oksuzoglu ◽  
Tunc Ones ◽  
Salih Ozguven ◽  
Sabahat Inanir ◽  
Halil Turgut Turoglu ◽  
...  

2018 ◽  
Vol 51 (2) ◽  
pp. 78-80
Author(s):  
Rômulo Hermeto Bueno do Vale ◽  
Daniela Andrade Ferraro ◽  
Paulo Schiavom Duarte ◽  
Giovana Carvalho ◽  
Marcos Santos Lima ◽  
...  

Abstract Objective: To compare the degree of benign bone marrow uptake of 18F-fluorodeoxyglucose (18F-FDG) between Hodgkin lymphoma patients with and without B symptoms. Materials and Methods: We analyzed the medical charts of 74 Hodgkin lymphoma patients who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) prior to the initiation of therapy between October 2010 and September 2013. In all of the patients, the bone marrow biopsy was negative and the 18F-FDG PET/CT images did not suggest bone marrow involvement. Of the 74 patients evaluated, 54 presented inflammatory (B) symptoms and 20 did not. Regions of interest (ROIs) were drawn on the sternum, the proximal thirds of the humeri, the proximal thirds of the femora, and both iliac wings (totaling seven ROIs per patient). To compare the patients with and without B symptoms, in terms of standardized uptake values (SUVs) for the seven ROIs, we used the Mann-Whitney U test. Results: For six of the ROIs, the SUVs were higher in the patients with B symptoms than in those without, and the difference was statistically significant (p < 0.05). There was also a tendency toward a statistically significant difference between the two groups in terms of the SUV for the right iliac wing ROI (p = 0.06). Conclusion: In our sample, the presence of B symptoms was associated with increased 18F-FDG uptake in bone marrow.


Sign in / Sign up

Export Citation Format

Share Document