scholarly journals National Forest Inventories capture the multifunctionality of managed forests in Germany

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nadja K. Simons ◽  
María R. Felipe-Lucia ◽  
Peter Schall ◽  
Christian Ammer ◽  
Jürgen Bauhus ◽  
...  

Abstract Background Forests perform various important ecosystem functions that contribute to ecosystem services. In many parts of the world, forest management has shifted from a focus on timber production to multi-purpose forestry, combining timber production with the supply of other forest ecosystem services. However, it is unclear which forest types provide which ecosystem services and to what extent forests primarily managed for timber already supply multiple ecosystem services. Based on a comprehensive dataset collected across 150 forest plots in three regions differing in management intensity and species composition, we develop models to predict the potential supply of 13 ecosystem services. We use those models to assess the level of multifunctionality of managed forests at the national level using national forest inventory data. Results Looking at the potential supply of ecosystem services, we found trade-offs (e.g. between both bark beetle control or dung decomposition and both productivity or soil carbon stocks) as well as synergies (e.g. for temperature regulation, carbon storage and culturally interesting plants) across the 53 most dominant forest types in Germany. No single forest type provided all ecosystem services equally. Some ecosystem services showed comparable levels across forest types (e.g. decomposition or richness of saprotrophs), while others varied strongly, depending on forest structural attributes (e.g. phosphorous availability or cover of edible plants) or tree species composition (e.g. potential nitrification activity). Variability in potential supply of ecosystem services was only to a lesser extent driven by environmental conditions. However, the geographic variation in ecosystem function supply across Germany was closely linked with the distribution of main tree species. Conclusions Our results show that forest multifunctionality is limited to subsets of ecosystem services. The importance of tree species composition highlights that a lack of multifunctionality at the stand level can be compensated by managing forests at the landscape level, when stands of complementary forest types are combined. These results imply that multi-purpose forestry should be based on a variety of forest types requiring coordinated planning across larger spatial scales.

Author(s):  
Nuttaluck Khamyong ◽  
◽  
Prasit Wangpakapattanawong ◽  
Sutthathorn Chairuangsri ◽  
Angkhana Inta ◽  
...  

2019 ◽  
Vol 89 (2) ◽  
pp. e01345 ◽  
Author(s):  
George Van Houtven ◽  
Jennifer Phelan ◽  
Christopher Clark ◽  
Robert D. Sabo ◽  
John Buckley ◽  
...  

2020 ◽  
Vol 73 (1) ◽  
pp. 77-97
Author(s):  
Mait Lang ◽  
Allan Sims ◽  
Kalev Pärna ◽  
Raul Kangro ◽  
Märt Möls ◽  
...  

Abstract Since 1999, Estonia has conducted the National Forest Inventory (NFI) on the basis of sample plots. This paper presents a new module, incorporating remote-sensing feature variables from airborne laser scanning (ALS) and from multispectral satellite images, for the construction of maps of forest height, standing-wood volume, and tree species composition for the entire country. The models for sparse ALS point clouds yield coefficients of determination of 89.5–94.8% for stand height and 84.2–91.7% for wood volume. For the tree species prediction, the models yield Cohen's kappa values (taking 95% confidence intervals) of 0.69–0.72 upon comparing model results against a previous map, and values of 0.51–0.54 upon comparing model results against NFI sample plots. This paper additionally examines the influence of foliage phenology on the predictions and discusses options for further enhancement of the system.


2015 ◽  
Vol 166 (1) ◽  
pp. 24-31
Author(s):  
Mirjam Bader ◽  
Urs Gimmi ◽  
Matthias Bürgi

The forests in the Canton of Zurich around 1823 – forest types and tree species Based on early forest management plans from 1823, this paper analyses forest management practices and tree species composition in the public forests of the Canton of Zurich in the early 19th century. Forest type distribution across the canton is reconstructed and detailed tree species composition is shown for 31 communities in the north-western part of the canton. For these communities, we compared the historical tree species composition with modern data from a regional forest inventory. The results show that coppice with standards was the most important forest type in the early 19th century. Tree species composition largely depends on the forest types. The highest diversity in tree species can be found in coppice and coppice-with-standards forests. The analyses reveal no clear relationship between tree species composition and environmental factors such as climate, topography and soil. This leads to the conclusion that in the early 19th century already management had a stronger influence on tree composition than natural conditions. During the last 200 years, tree species composition in the Canton of Zurich changed profoundly. Whereas today's forests are more natural in terms of species composition, they are less diverse in species. Knowing the tree species composition in the past can thus be helpful in conservation projects, e.g. in establishing coppice and coppice-with- standards forests in order to promote rare light-demanding plant and animal species.


2020 ◽  
Vol 50 (1) ◽  
pp. 1-12
Author(s):  
Austin Himes ◽  
Klaus Puettmann

Trends in land cover and the demand for ecosystem services suggest that plantation forests will be expected to provide a larger quantity and diversity of ecosystem services. We identified three measures indicative of diverse ecosystem services (aboveground biomass, understory biodiversity, and crown length) and compared their relationships to tree species composition in intensively managed forest plantations of the Coast Range mountains of the Pacific Northwest, United States. This study was conducted in stands of western hemlock (Tsuga heterophylla (Raf.) Sarg.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and red alder (Alnus rubra Bong.), as well as in mixtures of the three species that were 35–39 years old. In this operational setting, we did not observe the positive relationship between species diversity and productivity observed in other studies, which we attributed to management practices that minimize interspecific interaction during most of the rotation. Crown length and understory species diversity were greater in mixtures of tree species than in (monospecific) monocultures. When multiple ecosystem components were considered simultaneously, mixtures of tree species outperformed monocultures. The observed relationships of the three responses to tree species composition and diversity are likely explained by differences in tree phenology, shade tolerance, disease susceptibility, and management interventions. Based on the results, management that is solely fixated on wood production homogeneously throughout the plantation may miss opportunities to provide other ecosystem services.


2017 ◽  
Vol 6 (2) ◽  
pp. 46-56
Author(s):  
Сидоренков ◽  
Viktor Sidorenkov ◽  
Дебков ◽  
Nikita Debkov ◽  
Жафяров ◽  
...  

Survey of clearcut areas highlighted optimal options for coniferous undergrowth reservation in various forest types de-pending on height, number and spacing. Proposals to improve tree species composition with various thinning options are based on the findings and analysis of natural stand shaping experience. The experiment results support an opportunity to shape target stands from coniferous undergrowth with its sufficient reservation during clearcut.


2008 ◽  
Vol 159 (4) ◽  
pp. 80-90 ◽  
Author(s):  
Bogdan Brzeziecki ◽  
Feliks Eugeniusz Bernadzki

The results of a long-term study on the natural forest dynamics of two forest communities on one sample plot within the Białowieża National Park in Poland are presented. The two investigated forest communities consist of the Pino-Quercetum and the Tilio-Carpinetum type with the major tree species Pinus sylvestris, Picea abies, Betula sp., Quercus robur, Tilia cordata and Carpinus betulus. The results reveal strong temporal dynamics of both forest communities since 1936 in terms of tree species composition and of general stand structure. The four major tree species Scots pine, birch, English oak and Norway spruce, which were dominant until 1936, have gradually been replaced by lime and hornbeam. At the same time, the analysis of structural parameters indicates a strong trend towards a homogenization of the vertical stand structure. Possible causes for these dynamics may be changes in sylviculture, climate change and atmospheric deposition. Based on the altered tree species composition it can be concluded that a simple ≪copying≫ (mimicking) of the processes taking place in natural forests may not guarantee the conservation of the multifunctional character of the respective forests.


2017 ◽  
Vol 47 (8) ◽  
pp. 997-1009 ◽  
Author(s):  
Katherine F. Crowley ◽  
Gary M. Lovett

As tree species composition in forests of the northeastern United States changes due to invasive forest pests, climate change, or other stressors, the extent to which forests will retain or release N from atmospheric deposition remains uncertain. We used a species-specific, dynamic forest ecosystem model (Spe-CN) to investigate how nitrate (NO3–) leaching may vary among stands dominated by different species, receiving varied atmospheric N inputs, or undergoing species change due to an invasive forest pest (emerald ash borer; EAB). In model simulations, NO3– leaching varied widely among stands dominated by 12 northeastern North American tree species. Nitrate leaching increased with N deposition or forest age, generally with greater magnitude for deciduous (except red oak) than coniferous species. Species with lowest baseline leaching rates (e.g., red spruce, eastern hemlock, red oak) showed threshold responses to N deposition. EAB effects on leaching depended on the species replacing white ash: after 100 years, predicted leaching increased 73% if sugar maple replaced ash but decreased 55% if red oak replaced ash. This analysis suggests that the effects of tree species change on NO3– leaching over time may be large and variable and should be incorporated into predictions of effects of N deposition on leaching from forested landscapes.


Sign in / Sign up

Export Citation Format

Share Document