scholarly journals Molecular characterization of enterotoxigenic Escherichia coli toxins and colonization factors in children under five years with acute diarrhea attending Kisii Teaching and Referral Hospital, Kenya

Author(s):  
Erick Kipkirui ◽  
Margaret Koech ◽  
Abigael Ombogo ◽  
Ronald Kirera ◽  
Janet Ndonye ◽  
...  

Abstract Background Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of infectious diarrhea in children. There are no licensed vaccines against ETEC. This study aimed at characterizing Escherichia coli for ETEC enterotoxins and colonization factors from children < 5 years with acute diarrhea and had not taken antibiotics prior to seeking medical attention at the hospital. Methods A total of 225 randomly selected archived E. coli strains originally isolated from 225 children with acute diarrhea were cultured. DNA was extracted and screened by multiplex polymerase chain reaction (PCR) for three ETEC toxins. All positives were then screened for 11 colonization factors by PCR. Results Out of 225 E. coli strains tested, 23 (10.2%) were ETEC. Heat-stable toxin (ST) gene was detected in 16 (69.6%). ETEC isolates with heat-stable toxin of human origin (STh) and heat-stable toxin of porcine origin (STp) distributed as 11 (68.8%) and 5 (31.2%) respectively. Heat-labile toxin gene (LT) was detected in 5 (21.7%) of the ETEC isolates. Both ST and LT toxin genes were detected in 2 (8.7%) of the ETEC isolates. CF genes were detected in 14 (60.9%) ETEC strains with a majority having CS6 6 (42.9%) gene followed by a combination of CFA/I + CS21 gene detected in 3 (21.4%). CS14, CS3, CS7 and a combination of CS5 + CS6, CS2 + CS3 genes were detected equally in 1 (7.1%) ETEC isolate each. CFA/I, CS4, CS5, CS2, CS17/19, CS1/PCFO71 and CS21 genes tested were not detected. We did not detect CF genes in 9 (39.1%) ETEC isolates. More CFs were associated with ETEC strains with ST genes. Conclusion ETEC strains with ST genes were the most common and had the most associated CFs. A majority of ETEC strains had CS6 gene. In 9 (39.1%) of the evaluated ETEC isolates, we did not detect an identifiable CF.

1983 ◽  
Vol 61 (5) ◽  
pp. 287-292 ◽  
Author(s):  
Claude Lazure ◽  
Nabil G. Seidah ◽  
Michel Chrétien ◽  
Réal Lallier ◽  
Serge St-Pierre

The chemical characterization of Escherichia coli heat-stable enterotoxin (ST) is described. The toxin was isolated and purified to homogeneity from the E. coli strain F11 (PI55) of porcine origin. Following quantitative amino acid analysis, the enterotoxin was found to contain 18 amino acids including 6 cysteines, but was devoid of Ser, Val, Met, Ile, Lys, His, and Arg residues. All cysteine residues were found to be involved in disulfide bridges, even though their positions could not be localized. The enterotoxin thus has a molecular weight of 1979 and was shown to be an octadecapeptide with the following sequence: H2N-Asn-Thr-Phe-Tyr-Cys-Cys-Glu-Leu-Cys-Cys-Asn-Pro-Ala-Cys-Ala-Gly-Cys-Tyr-COOH. Its relationship to other known enterotoxins is discussed.


2017 ◽  
Vol 11 (1) ◽  
Author(s):  
Casmir Ifeanyichukwu Cajetan Ifeanyi ◽  
Nkiruka Florence Ikeneche ◽  
Bassey Enya Bassey ◽  
Nazek Al-Gallas ◽  
Akpa Alexander Casmir ◽  
...  

2012 ◽  
Vol 47 (No. 6) ◽  
pp. 149-158 ◽  
Author(s):  
J. Osek ◽  
P. Gallien

Fourteen Escherichia coli O157 strains isolated from cattle and pigs in Poland and in Germany were investigated, using PCR, for the genetic markers associated with Shiga toxin-producing E. coli (STEC). Only two strains, both of cattle origin, were positive for the fliC (H7) gene and could be classified as O157 : H7. Nine isolates had stx shiga toxin genes, either stx1 (1 strain), stx2 (4 isolates) or both (4 strains). The stx2-carrying samples were further subtyped by PCR for the stx2c, stx2d, and stx2e toxin variants. It was shown that all but one stx2-positive bacteria possessed the stx2c Shiga toxin gene type and one stx2 STEC isolate had the stx2d virulence factor sub-type. The eaeA (intimin) gene was found in 9 strains (8 isolates from cattle and one strain from pigs); all of them harboured the genetic marker characteristic of the gamma intimin variant. The translocated intimin receptor (tir) gene was detected in 7 isolates tested and among them only one tir-positive strain was recovered from pigs. The ehly E. coli enterohemolysin gene was amplified in all but one strains obtained from cattle and only in one isolate of porcine origin. The genetic relatedness of the analysed E. coli O157 strains was examined by restriction fragment length polymorphism (RFLP) of chromosomal DNA digested with XbaI. Two distinct but related RFLP pattern clusters were observed: one with 9 strains (8 isolates of bovine origin and one strain obtained from pigs) and the other one comprises the remaining 5 E. coli isolates (4 of porcine origin and one strain recovered from cattle). The results suggest that pigs, besides cattle, may be a reservoir of E. coli O157 strains potentially pathogenic to humans. Moreover, epidemiologically unrelated isolates of the O157 serogroup, recovered from different animal species, showed a clonal relationship as demonstrated by the RFLP analysis.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


Vaccine ◽  
2010 ◽  
Vol 28 (43) ◽  
pp. 6977-6984 ◽  
Author(s):  
Joshua Tobias ◽  
Jan Holmgren ◽  
Maria Hellman ◽  
Erik Nygren ◽  
Michael Lebens ◽  
...  

1979 ◽  
Vol 9 (4) ◽  
pp. 493-497
Author(s):  
M H Merson ◽  
R B Sack ◽  
A K Kibriya ◽  
A Al-Mahmood ◽  
Q S Adamed ◽  
...  

Diagnosis of enterotoxigenic Escherichia coli diarrhea was made in 109 adult males with an acute dehydrating cholera-like syndrome in Dacca, Bangladesh, by testing 10 colonies isolated from admission stool specimens for production of heat-labile and heat-stable toxins. Toxin testing of one colony yielded a diagnosis in 92% of the cases, testing of two colonies yielded a diagnosis in 95% of the cases, testing of a pool of 5 colonies yielded a diagnosis in 95% of the cases, and testing of a pool of 10 colonies yielded a diagnosis in 96% of the cases. From stool cultures obtained on subsequent days, toxin testing of individual colonies and pools revealed diminished efficacy of pooling with decreasing numbers of enterotoxin-positive isolates in the pool. To detect the presence of enterotoxigenic E. coli in stools, toxin testing of 5 individual isolates and a pool of 10 colonies was found to be almost as effective as the testing of 10 individual isolates.


2021 ◽  
Author(s):  
Hyesuk Seo ◽  
Carolina Garcia ◽  
Xiaosai Ruan ◽  
Qiangde Duan ◽  
David A Sack ◽  
...  

There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading cause of diarrhea for children in developing countries and international travelers. Virulence heterogeneity among strains and difficulties identifying safe antigens for protective antibodies against STa, a potent but poorly immunogenic heat-stable toxin which plays a key role in ETEC diarrhea, are challenges in ETEC vaccine development. To overcome these challenges, we applied toxoid fusion strategy and novel epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform to construct two chimeric multivalent proteins, toxoid fusion 3xSTaN12S-mnLTR192G/L211A and adhesin CFA/I/II/IV MEFA, and demonstrated that proteins induced protective antibodies against STa and heat-labile toxin (LT) produced by all ETEC strains or the seven most important ETEC adhesins (CFA/I, CS1 to CS6) expressed by the ETEC strains causing 60-70% diarrheal cases and moderate-to-severe cases. Combining two proteins, we prepared a protein-based multivalent ETEC vaccine, MecVax. MecVax was broadly immunogenic; mice and pigs intramuscularly immunized with MecVax developed no apparent adverse effects but robust antibody responses to the target toxins and adhesins. Importantly, MecVax-induced antibodies were broadly protective, demonstrated by significant adherence inhibition against E. coli bacteria producing any of the seven adhesins and neutralization of STa and CT enterotoxicity. Moreover, MecVax protected against watery diarrhea, and over 70% or 90% any diarrhea from an STa+ or an LT+ ETEC strain in a pig challenge model. These results indicated that MecVax induces broadly protective antibodies and prevents diarrhea preclinically, signifying MecVax potentially an effective injectable vaccine for ETEC. IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC) bacteria are a top cause of children’s diarrhea and travelers’ diarrhea and are responsible for over 220 million diarrheal cases and more than 100,000 deaths annually. A safe and effective ETEC vaccine can significantly improve public health, particularly in developing countries. Data from this preclinical study showed that MecVax induces broadly protective anti-adhesin and antitoxin antibodies, becoming the first ETEC vaccine candidate to induce protective antibodies inhibiting adherence of the seven most important ETEC adhesins and neutralizing enterotoxicity of LT but also STa toxin. More importantly, MecVax is shown to protect against clinical diarrhea from STa+ or LT+ ETEC infection in a pig challenge model, recording protection from antibodies induced by protein-based injectable subunit vaccine MecVax against ETEC diarrhea and perhaps the possibility of IM administered protein vaccines for protection against intestinal mucosal infection.


2000 ◽  
Vol 38 (1) ◽  
pp. 27-31
Author(s):  
Firdausi Qadri ◽  
Swadesh Kumar Das ◽  
A. S. G. Faruque ◽  
George J. Fuchs ◽  
M. John Albert ◽  
...  

ABSTRACT The prevalence of toxin types and colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) was prospectively studied with fresh samples ( n = 4,662) obtained from a 2% routine surveillance of diarrheal stool samples over 2 years, from September 1996 to August 1998. Stool samples were tested by enzyme-linked immunoassay techniques and with specific monoclonal antibodies for the toxins and CFs. The prevalence of ETEC was 14% ( n = 662), with over 70% of the strains isolated from children 0 to 5 years of age, of whom 93% were in the 0- to 3-year-old age range. Of the total ETEC isolates, 49.4% were positive for the heat-stable toxin (ST), 25.4% were positive for the heat-labile toxin (LT) only, and 25.2% were positive for both LT and ST. The rate of ETEC isolation peaked in the hot summer months of May to September and decreased in winter. About 56% of the samples were positive for 1 or more of the 12 CFs that were screened for. The coli surface antigens CS4, CS5, and/or CS6 of the colonization factor antigen (CFA)/IV complex were most prevalent (incidence, 31%), followed by CFA/I (23.5%) and coli surface antigens CS1, CS2, and CS3 of CFA/II (21%). In addition, other CFs detected in decreasing order were CS7 (8%), CS14 (PCFO166) (7%), CS12 (PCFO159) (4%), CS17 (3%), and CS8 (CFA/III) (2.7%). The ST- or LT- and ST-positive ETEC isolates expressed the CFs known to be the most prevalent (i.e., CFA/I, CFA/II, and CFA/IV), while the strains positive for LT only did not. Among children who were infected with ETEC as the single pathogen, a trend of relatively more severe disease in children infected with ST-positive ( P < 0.001) or LT- and ST-positive ( P < 0.001) ETEC isolates compared to the severity of the disease in children infected with LT only-positive ETEC isolates was seen. This study supports the fact that ETEC is still a major cause of childhood diarrhea in Bangladesh, especially in children up to 3 years of age, and that measures to prevent such infections are needed in developing countries.


Sign in / Sign up

Export Citation Format

Share Document