scholarly journals RTP4 is a novel prognosis-related hub gene in cutaneous melanoma

Hereditas ◽  
2021 ◽  
Vol 158 (1) ◽  
Author(s):  
Yiqi Li ◽  
Jue Qi ◽  
Jiankang Yang

Abstract Objective Melanoma accounts for 80% of skin cancer deaths. The pathogenesis of melanoma is regulated by gene networks. Thus, we aimed here to identify gene networks and hub genes associated with melanoma and to further identify their underlying mechanisms. Methods GTEx (normal skin) and TCGA (melanoma tumor) RNA-seq datasets were employed for this purpose. We conducted weighted gene co-expression network analysis (WGCNA) to identify key modules and hub genes associated with melanoma. Log-rank analysis and multivariate Cox model analysis were performed to identify prognosis genes, which were validated using two independent melanoma datasets. We also evaluated the correlation between prognostic gene and immune cell infiltration. Results The blue module was the most relevant for melanoma and was thus considered the key module. Intersecting genes were identified between this module and differentially expressed genes (DEGs). Finally, 72 genes were identified and verified as hub genes using the Oncomine database. Log-rank analysis and multivariate Cox model analysis identified 13 genes that were associated with the prognosis of the metastatic melanoma group, and RTP4 was validated as a prognostic gene using two independent melanoma datasets. RTP4 was not previously associated with melanoma. When we evaluated the correlation between prognostic gene and immune cell infiltration, we discovered that RTP4 was associated with immune cell infiltration. Further, RTP4 was significantly associated with genes encoding components of immune checkpoints (PDCD1, TIM-3, and LAG3). Conclusions RTP4 is a novel prognosis-related hub gene in cutaneous melanoma. The novel gene RTP4 identified here will facilitate the exploration of the molecular mechanism of the pathogenesis and progression of melanoma and the discovery of potential new target for drug therapy.

2021 ◽  
Author(s):  
shenglan li ◽  
Zhuang Kang ◽  
jinyi Chen ◽  
Can Wang ◽  
Zehao Cai ◽  
...  

Abstract Background Medulloblastoma is a common intracranial tumor among children. In recent years, research on cancer genome has established four distinct subtypes of medulloblastoma: WNT, SHH, Group3, and Group4. Each subtype has its own transcriptional profile, methylation changes, and different clinical outcomes. Treatment and prognosis also vary depending on the subtype. Methods Based on the methylation data of medulloblastoma samples, methylCIBERSORT was used to evaluate the level of immune cell infiltration in medulloblastoma samples and identified 10 kinds of immune cells with different subtypes. Combined with the immune database, 293 Imm-DEGs were screened. Imm-DEGs were used to construct the co-expression network, and the key modules related to the level of differential immune cell infiltration were identified. Three immune hub genes (GAB1, ABL1, CXCR4) were identified according to the gene connectivity and the correlation with phenotype in the key modules, as well as the PPI network involved in the genes in the modules. Results The subtype marker was recognized according to the immune hub, and the subtype marker was verified in the external data set, the methylation level of immune hub gene among different subtypes was compared and analyzed, at the same time, tissue microarray was used for immunohistochemical verification, and a multi-factor regulatory network of hub gene was constructed. Conclusions Identifying subtype marker is helpful to accurately identify the subtypes of medulloblastoma patients, and can accurately evaluate the treatment and prognosis, so as to improve the overall survival of patients.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12304
Author(s):  
Zhengyuan Wu ◽  
Leilei Chen ◽  
Chaojie Jin ◽  
Jing Xu ◽  
Xingqun Zhang ◽  
...  

Background Cutaneous melanoma (CM) is a life-threatening destructive malignancy. Pyroptosis significantly correlates with programmed tumor cell death and its microenvironment through active host-tumor crosstalk. However, the prognostic value of pyroptosis-associated gene signatures in CM remains unclear. Methods Gene profiles and clinical data of patients with CM were downloaded from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes associated with pyroptosis and overall survival (OS). We constructed a prognostic gene signature using LASSO analysis, then applied immune cell infiltration scores and Kaplan-Meier, Cox, and pathway enrichment analyses to determine the roles of the gene signature in CM. A validation cohort was collected from the Gene Expression Omnibus (GEO) database. Results Four pyroptosis-associated genes were identified and incorporated into a prognostic gene signature. Integrated bioinformatics findings showed that the signature correlated with patient survival and was associated with tumor growth and metastasis. The results of Gene Set Enrichment Analysis of a risk signature indicated that several enriched pathways are associated with cancer and immunity. The risk signature for immune status significantly correlated with tumor stem cells, the immune microenvironment, immune cell infiltration and immune subtypes. The expression of four pyroptosis genes significantly correlated with the OS of patients with CM and was related to the sensitivity of cancer cells to several antitumor drugs. A signature comprising four genes associated with pyroptosis offers a novel approach to the prognosis and survival of patients with CM and will facilitate the development of individualized therapy.


2021 ◽  
Author(s):  
Shenglan Li ◽  
Zhuang Kang ◽  
Jinyi Chen ◽  
Can Wang ◽  
Zehao Cai ◽  
...  

Abstract Medulloblastoma is a common intracranial tumor among children. In recent years, research on cancer genome has established four distinct subtypes of medulloblastoma: WNT, SHH, Group3, and Group4. Each subtype has its own transcriptional profile, methylation changes, and different clinical outcomes. Treatment and prognosis also vary depending on the subtype. Based on the methylation data of medulloblastoma samples, methylCIBERSORT was used to evaluate the level of immune cell infiltration in medulloblastoma samples and identified 10 kinds of immune cells with different subtypes. Combined with the immune database, 293 Imm-DEGs were screened. Imm-DEGs were used to construct the co-expression network, and the key modules related to the level of differential immune cell infiltration were identified. Three immune hub genes (GAB1, ABL1, CXCR4) were identified according to the gene connectivity and the correlation with phenotype in the key modules, as well as the PPI network involved in the genes in the modules. The subtype marker was recognized according to the immune hub, and the subtype marker was verified in the external data set, Finally, the methylation level of immune hub gene among different subtypes was compared and analyzed, at the same time, tissue microarray was used for immunohistochemical verification, and a multi-factor regulatory network of hub gene was constructed. Identifying subtype marker is helpful to accurately identify the subtypes of medulloblastoma patients, and can accurately evaluate the treatment and prognosis, so as to improve the overall survival of patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui Huang ◽  
Jinying Liu ◽  
Hui Li ◽  
Lierui Zheng ◽  
Haojun Jin ◽  
...  

Hepatocellular carcinoma (HCC) is a primary liver cancer with extremely high mortality in worldwide. HCC is hard to diagnose and has a poor prognosis due to the less understanding of the molecular pathological mechanisms and the regulation mechanism on immune cell infiltration during hepatocarcinogenesis. Herein, by performing multiple bioinformatics analysis methods, including the RobustRankAggreg (RRA) rank analysis, weighted gene co-expression network analysis (WGCNA), and a devolution algorithm (CIBERSORT), we first identified 14 hub genes (NDC80, DLGAP5, BUB1B, KIF20A, KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2, UBE2C, and PRC1) in HCC, whose expression levels were significantly up-regulated and negatively correlated with overall survival time. Moreover, we found that the expression of these hub genes was significantly positively correlated with immune infiltration cells, including regulatory T cells (Treg), T follicular helper (TFH) cells, macrophages M0, but negatively correlated with immune infiltration cells including monocytes. Among these hub genes, KIF2C and UBE2C showed the most significant correlation and were associated with immune cell infiltration in HCC, which was speculated as the potential prognostic biomarker for guiding immunotherapy.


2021 ◽  
Author(s):  
Ronghua Yang ◽  
Yidan Sun ◽  
Tianqi Chen ◽  
Jiehua Li ◽  
Xiaobing Pi ◽  
...  

Abstract BackgroundThe tumorigenesis of Skin cutaneous melanoma (SKCM) is still a mystery. Our study conducted a comprehensive analysis of the immune cell infiltration in the TME of SKCM. Based on the differential expression genes in the cluster grouped by the immune infiltration status, a set of hub genes related to the clinical prognosis of SKCM and tumor immune infiltration were explored.MethodsWe analyzed the immune cell infiltration in two independent cohorts, and then assessed the relationship between the internal pattern of immune cell infiltration and SKCM characteristics, including clinicopathological features, potential biological pathways and gene mutations. We further divided the three clusters of differential genes into two groups with different unique biological processes. The Signature gene-A gene set was mainly manifested as exon skipping (ES) in SKCM patients, while the Signature gene-B gene set has no obvious alternative splicing form. Subsequently, we not only analyzed the genetic variation of the two signatures, but also constructed a ceRNA regulatory network..LASSO Cox regression was utilized to find the immune infiltration signature and the risk score of SKCM. ResultWe finally obtained 13 Hub genes, and calculated the risk score based on the coefficient of each gene to further explore the impact of the high and low-risk score on the biologically related functions and prognosis of SKCM patients.The correlation between the risk score and the clinicopathological characteristics of SKCM patients indicated that the low risk score was associated with TMECluster-A classification (P <0.001) and metastatic SKCM (P <0.001). We finally obtained 13 Hub genes which showed different prognostic effects in pan-cancers. The IHC staining results showed that Ube2L6, SRPX2, IFIT2 were higher expression while CLEC4E, END3, KIR2DL4 were lower expression in 25 melanoma specimens.ConclusionWe performed a comprehensive assessment of SKCM's immune environment and constructed a set of unprecedented immune signatures related to the immune landscape (EDN3、CLEC4E、SRPX2、KIR2DL4、UBE2L6、IFIT2), which are correlated with the different prognosis and drug response of SKCM. The immune gene signature we constructed can be used as a robust prognostic biomarker of SKCM and a predictor of immunotherapy effect.


2021 ◽  
Author(s):  
Di Cao ◽  
Jun Wang ◽  
Yan Lin ◽  
Guangwei Li

Abstract Background: The therapeutic efficacy of immune checkpoint inhibitor therapy is highly influenced by tumor mutation burden (TMB). The relationship between TMB and prognosis in lower-grade glioma is still unclear. We aimed to explore the relationships and mechanisms between them in lower-grade glioma.Methods: We leveraged somatic mutation data from The Cancer Genome Atlas (TCGA). Clinical cases were divided into high- and low-TMB groups based on the median of TMB. Infiltrating immune cells were analyzed using CIBERSORT and differential expression analysis between the prognostic groups performed. The key genes were identified as intersecting between immune-related genes. Cox regression and survival analysis were performed on the intersecting genes. A total of 7 hub genes were identified. The effect of somatic copy number alterations (SCNA) of the hub genes on immune cell infiltration was analyzed using TIMER, which was used to determine the risk factors and immune infiltration status in LGG. Subsequently, based on hub genes, a TMB Prognosis Index (TMBPI) model was constructed to predict the risk in LGG patients. Besides, this model was validated using data from TCGA and Chinese Glioma Genome Atlas (CGGA).Results: High-TMB favored worse prognosis (P<0.001) and macrophage infiltration was an independent risk factor (P<0.001). In the high-TMB group (P=0.033, P=0.009), the proportion of macrophages M0 and M2 increased and monocytes decreased (P=0.006). Besides, the SCNA of the hub genes affected the level of immune cell infiltration by varying degrees among which IGF2BP3, NPNT, and PLA2G2A had a significant impact. The AUC of the ROC curve at 1-, 3- and 5-years were all above 0.74.Conclusions: This study implies that high-TMB correlated with unfavorable prognosis in lower-grade glioma. And high-TMB may have an impact on prognosis by changing tumor microenvironment, caused by the SCNAs of genes. The TMBPI model accurately predicted prognosis in LGG patients.


2021 ◽  
Author(s):  
Qi Zhou ◽  
Xin Xiong ◽  
Min Tang ◽  
Yingqing Lei ◽  
Hongbin Lv

Abstract BackgroundDiabetic retinopathy (DR), a severe complication of diabetes mellitus (DM), is a global social and economic burden. However, the pathological mechanisms mediating DR are not well-understood. This study aimed to identify differentially methylated and differentially expressed hub genes (DMGs and DEGs, respectively) and associated signaling pathways, and to evaluate immune cell infiltration involved in DR. MethodsTwo publicly available datasets were downloaded from the Gene Expression Omnibus database. Transcriptome and epigenome microarray data and multi-component weighted gene coexpression network analysis (WGCNA) were utilized to determine hub genes within DR. One dataset was utilized to screen DEGs and to further explore their potential biological functions using functional annotation analysis. A protein-protein interaction network was constructed. Gene set enrichment and variation analyses (GSVA and GSEA, respectively) were utilized to identify the potential mechanisms mediating the function of hub genes in DR. Infiltrating immune cells were evaluated in one dataset using CIBERSORT. The Connectivity Map (CMap) database was used to predict potential therapeutic agents. ResultsIn total, 673 DEGs (151 upregulated and 522 downregulated genes) were detected. Gene expression was significantly enriched in the extracellular matrix and sensory organ development, extracellular matrix organization, and glial cell differentiation pathways. Through WGCNA, one module was found to be significantly related with DR (r=0.34, P =0.002), and 979 hub genes were identified. By comparing DMGs, DEGs, and genes in WGCNA, we identified eight hub genes in DR ( AKAP13, BOC, ACSS1, ARNT2, TGFB2, LHFPL2, GFPT2, TNFRSF1A ), which were significantly enriched in critical pathways involving coagulation, angiogenesis, TGF-β, and TNF-α-NF-κB signaling via GSVA and GSEA. Immune cell infiltration analysis revealed that activated natural killer cells, M0 macrophages, resting mast cells, and CD8 + T cells may be involved in DR. ARNT2, TGFB2, LHFPL2 , and AKAP13 expression were correlated with immune cell processes, and ZG-10, JNK-9L, chromomycin-a3, and calyculin were identified as potential drugs against DR. Finally, TNFRSF1A , GFPT2 , and LHFPL2 expression levels were consistent with the bioinformatic analysis. ConclusionsOur results are informative with respect to correlations between differentially methylated and expressed hub genes and immune cell infiltration in DR, providing new insight towards DR drug development and treatment.


2020 ◽  
Author(s):  
Xiaotao Jiang ◽  
Kunhai Zhuang ◽  
Kailin Jiang ◽  
Yi Wen ◽  
Linling Xie ◽  
...  

Abstract Background: With the coming of immunotherapy era, immunotherapy is gradually playing a vital role in the treatment of gastric cancer (GC). However, immune microenvironment in gastric precancerous lesions (GPL) and early gastric cancer (EGC) still remain largely unknown. Methods: From the Gene Expression Omnibus (GEO), data of three GPL-related gene expression profiles (GSE55696, GSE87666 and GSE130823) and three GC data sets with clinical information (GSE66229, GSE15459 and GSE34942) were downloaded. Three GC data were consolidated as a GC meta-GEO cohort. RNA sequencing data of 375 stomach adenocarcinoma (STAD) samples with clinical information from The Cancer Genome Atlas (TCGA) and 175 stomach normal controls (NC) from Genotype-Tissue Expression (GTEx) datasets were obtained from the UCSC Xena browser, which were merged as a STAD TCGA-GTEx cohort. The abundance of immune cells in above datasets were estimated using Immune Cell Abundance Identifier (ImmuCellAI) algorithm. Firstly, key immune cells associated with GPL progression to EGC were identified using one‐way analysis of variance (ANOVA) test as well as Spearman’s correlation test in two GPL and EGC related datasets (GSE55696 and GSE87666). Then, weighted gene co-expression analysis (WGCNA) and pathway enrichment were adopted to identify hub gene co-expression network. Candidate hub genes were identified based on network parameters. Combining expression comparison and prognosis analysis in STAD TCGA-GTEx and GC meta-GEO cohort, Genes with significant difference between GC and NC and prognostic significance were identified as real hub genes. Correlation between real hub genes and key immune cells was evaluated using Pearson’s correlation test. The pattern of key immune cells infiltration and hub genes expression as well as their correlation during GPL progression to EGC were validated in an independent cohort GSE130823. The correlation was also verified in the GC datasets (STAD TCGA-GTEx and GC meta-GEO cohort).Results: Combining with GSE55696 and GSE87666 cohorts, NKT cell was found gradually decreased with GPL progression and negatively correlated with tumorigenesis significantly. It was identified as the key immune cell associated with GPL progression to EGC based on one-way ANOVA test and Spearman’s correlation test. Further verification indicated that it was significantly downregulated in GC in meta-GEO cohort and STAD TCGA-GTEx cohort. According to the results of WGCNA and KEGG pathway enrichment, green modules in GSE55696 and GSE87666 cohorts were considered as hub modules as they were negatively associated with NKT cell infiltration at a significant level and their overlapping genes were significantly enriched in immune-related pathways. In further screening, CXCR4 was found to be significantly upregulated in GC and had a poor prognosis, which was determined as the real hub gene. CXCR4 expression was found increased with GPL progression, positively correlated with tumorigenesis and negatively correlated with NKT cell infiltration significantly. The pattern of NKT cell infiltration and CXCR4 expression as well as their relationship stay consistent in the independent GPL cohort GSE130823. The negative correlation of CXCR4 with NKT cell infiltration was also confirmed in GC datasets (GC meta-GEO cohort and STAD TCGA-GTEx cohort).Conclusion: CXCR4 and NKT cell are possible to serve as biomarkers in monitoring GPL progression to EGC. Besides, CXCR4 may be involved in regulating NKT cell infiltration during GPL progression to EGC, which may provide a new immunotherapeutic target.


Sign in / Sign up

Export Citation Format

Share Document