scholarly journals Abundance and diversity of soil invertebrate macro-fauna in different land uses at Shenkolla watershed, South Central Ethiopia

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias ◽  
Emana Getu

Abstract Background Land use can exert a strong influence on the abundance, diversity, and community composition of soil macro-fauna. This study was conducted to evaluate the effects of four land use types on the abundance and diversity of soil invertebrate macro-fauna communities. These land uses include forest land, grazing land, crop cultivated outfields, and homestead garden fields present at Shenkolla watershed, south central Ethiopia. Monolith sampling of soil macro-fauna was done according to the standard of Tropical Soils Biology and Fertility Institute (TSBF) procedure. Five sampling points were chosen in each land use type and small monolith (25 × 25 × 30 cm) was dug out at 5-m interval along a transect with randomly positioned starting point, but perpendiculars to the slope. A total of 20 monoliths (4 treatments × 5 replications) were taken across all the land use types. Sampling of SIMF was carried out in April 2019 where soil macro-faunas are known to be more active. To evaluate the SIMF community eight parameters were measured: Shannon-Wiener index, Simpson diversity index, Pielou’s measure of evenness, Margalef’s diversity index, the Number of Occurrence Index, Relative abundance, Density (individuals per square meter) of each taxon and density of all SIMF and Bray-Curtis similarity index. The data were further analyzed using ANOVA and a general linear model to determine the variation and the influence of land use type, respectively. Results In general, 332 individuals, 10 orders, 12 families, and 15 species were identified, from the collected samples. There were significant differences (p < 0.05) among the four land use types for SIMF except wireworm, spiders, and millipedes. Overall abundance and diversity were lowest in the crop cultivated outfields and highest in homestead garden fields and forest land. Bray-Curtis’ similarity was highest between the sampled sites s16 and s19 with in the forest land, and lowest (2%) between sites s1 (crop cultivated out fields) and s14 (homestead garden fields). Conclusion The results revealed that the diversity of SIMF was positively influenced by forest land and homestead garden fields and negatively influenced in grazing land and cultivated outfields. Therefore, maintenance of a continuous litter cover at the surface and application of a wide range of organic fertilizers (farmyard manure, household refuse, and compost) is very much critical to prevent the decrease in diversity of SIMF.

Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


2019 ◽  
Vol 17 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Jiao-Jiao Han ◽  
Xu Duan ◽  
Yang-Yi Zhao ◽  
Meng Li

AbstractSoil moisture, stable hydrogen, and oxygen isotopes were sampled and determined in a demonstration area of soil and moisture conservation at the Laocheng Town of Yuanmou County in Chuxiong Prefecture, Yunnan of three land use types: Leucaena Benth artificial forest, Heteropogon contortus grass field, and farmland. The characteristics of stable hydrogen and oxygen isotopes of soil moisture in these different land use types at different soil depths were analyzed to investigate the regularities in the quantitative formation of soil moisture balance. In terms of forest land, we found that the variable coefficient of hydrogen isotopes in the 0-20 cm soil layer was the smallest, but decreased with depth under 20 cm. While in grassland, the variable coefficient in 80-100 cm was the largest, and decreased with depth above 80 cm. As for farmland, the variable coefficient in the top 20 cm was the largest, followed by 40-60 cm, and the medium 20-40 cm was the smallest. The soil moisture hydrogen isotope values of three land use type were different at surface layer, but prone to be consistent in each type. Along the soil depth in forest land, the hydrogen isotope increased first and then decreased, while increased in the end, and the maximum appeared in 80-100 cm. In grassland, the hydrogen isotope increased initially as the forest land but then decreased continuously, so the maximum was found at 20-40 cm. And in grassland, the hydrogen isotope of all depths were higher than which of forest land and farmland. In same land use type, the hydrogen isotope of soil moisture changed significantly at the surface, and the variation of hydrogen isotopes was obviously decreased along the depth. Our findings could provide reference data which would contribute to the assessment of regional groundwater resources in the dry-hot valley of Yuanmou in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mesfin Kassa Cholbe ◽  
Fassil Kebede Yeme ◽  
Wassie Haile Woldeyohannes

Information on soil fertility status of acid soil of a particular area as affected by land use type is important for developing sound soil management systems for improved and sustainable agricultural productivity. The main objective of this study was to assess the fertility status and effect of land use change on soil physicochemical properties. In this study, adjacent three land use types, namely, enset-coffee, crop, and grazing land use were considered in four districts (i.e., Bolos Sore, Damot Gale, Damot Sore, and Sodo Zuria) of Wolaita Zone, southern Ethiopia. Soil samples were collected from a depth of 0–20 cm from each land use type of the respective districts for physicochemical analyses. The results showed that land use types significantly affected ( P ≤ 0.05 ) soil properties such as bulk density, available P, exchangeable potassium, exchangeable acidity, exchangeable bases (Na, K, Ca, Mg), exchangeable acidity, and CEC. Besides, soil pH, OC, and TN were influenced significantly ( P ≤ 0.05 ) both by districts and land use types. The very strongly acidic soils were found predominantly in the crop and grazing lands whereas a neutral acidity level was found in the enset-coffee land use type of four districts. In conclusion, the study proves that land use type change within the same geographic setting can affect the severity of soil acidity due to over cultivation and rapid organic matter decomposition. Finally, the study recommends an in-depth study and analysis on the root causes in aggravating soil acidity under crop and grazing land use types.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 602
Author(s):  
Ina Aneva ◽  
Petar Zhelev ◽  
Simeon Lukanov ◽  
Mariya Peneva ◽  
Kiril Vassilev ◽  
...  

Studies on the impact of agricultural practices on plant diversity provide important information for policy makers and the conservation of the environment. The aim of the present work was to evaluate wild plant diversity across the agroecosystems in two contrasting regions of Bulgaria; Pazardzhik-Plovdiv (representing agroecosystems in the lowlands) and Western Stara Planina (the Balkan Mountains, representing agroecosystems in the foothills of the mountains). This study conducted a two-year assessment of plant diversity in different types of agricultural and forest ecosystems, representing more than 30 land use types. Plant diversity, measured by species number, was affected by the land use type only in Pazardzhik-Plovdiv region. More pronounced was the effect of the groups of land use types on the diversity, measured by the mean species number per scoring plot. Climatic conditions, measured by 19 bioclimatic variables, were the most important factor affecting plant species diversity. Six bioclimatic variables had a significant effect on the plant diversity, and the effect was more pronounced when the analysis considered pooled data of the two regions. The highest plant diversity was found on grazing land with sparse tree cover, while the lowest one was in the land use types representing annual crops or fallow. The study also established a database on weed species, relevant to agriculture. A number of common weeds were found in the Pazardzhik-Plovdiv region, while the most frequent species in the Western Stara Planina region were indigenous ones. Overall, the natural flora of Western Stara Planina was more conserved; eleven orchid species with conservation significance were found in the pastures and meadows in that region. The present study is the first attempt in Bulgaria to characterize the plant diversity across diverse agroecosystems representing many different land use types and environmental conditions. The results can contribute to nature conservation, biodiversity, and the sustainable use of plant resources.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yared Mulat ◽  
Kibebew Kibret ◽  
Bobe Bedadi ◽  
Muktar Mohammed

Abstract Background Soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa subwatershed (622 ha). Soil samples were collected from the surface soil (0–20 cm depth) of the identified land uses with three replications and the soil quality parameters were analyzed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give the unitless scores for the selected data sets, which were then integrated into a soil quality index (SQI). Results The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon (SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses falls in the intermediate soil quality (0.55 < SQI < 0.70) class. Conclusion In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality like organic matter-controlled systems is imperative for sustainable agricultural production in the study area.


2021 ◽  
Author(s):  
Yared Mulat Tefera ◽  
kibebew Kibret Tehaye ◽  
Bobe Bobe Bedadi ◽  
Muktar Mohammed Kedir

Abstract Background: Soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa subwatershed (622 ha). Soil samples were collected from the surface soil (0-20 cm depth) of the identified land uses with three replications and the soil quality parameters were analyzed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give the unitless scores for the selected data sets, which were then integrated into a soil quality index (SQI).Results: The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon (SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses falls in the intermediate soil quality (0.55 < SQI < 0.70) class.Conclusion: In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality like organic matter-controlled systems is imperative for sustainable agricultural production in the study area.


Author(s):  
Chris Brunsdon ◽  
Jonathan Corcoran

Whilst some land uses are highly criminogenic, others remain largely free of crime. This patterning is a reflection of the types and timing of daily activities that take place in a given land use and the opportunities that this presents for crime. While the criminology literature has developed a rigorous understanding of geographic component of crime, relatively less emphasis has been placed on the temporal dimension. Here, we address this through applying a technique to examine micro-temporal variations in crime at places. This technique adopts a factor approach to model hourly counts of crime across seven land use types (commercial, residential, parkland, agricultural, medical/hospital, industrial and education) to unveil the number and distribution of crime signals across a 24-hour period along with how these signals mix across each land use type. Results reveal clear and distinct differences between crime type and land use, highlighting the diurnal nature of crime patterns and speak to the literature on risky places and risky times. The utility of our approach lies in its capacity to delineate common temporal rhythms and how these rhythms are shared across different land use types.


2019 ◽  
Vol 11 (12) ◽  
pp. 3286 ◽  
Author(s):  
Jincai Ma ◽  
Sumiya Nergui ◽  
Ziming Han ◽  
Guannan Huang ◽  
Huiru Li ◽  
...  

From the west to the east across Northeast China, there are three major land use types, ranging from agricultural-pastoral interlaced land, crop land, and forest land. The soil microbial community of each land use type has been reported; however, a thorough comparison of the soil microbial ecology of soils from each land use type has not been made. In the current study, soil samples from agricultural-pastoral land, crop land, and an artificial economic forest were collected from Tongliao, Siping, and Yanji, respectively. The structure and composition of bacterial and fungal communities was investigated by a next generation sequencing protocol, and soil physicochemical properties were also determined. Pair-wise analysis showed some soil parameters were significantly different between agricultural-pastoral land and crop land or forest land, while those soil parameters shared more similarities in crop land and forest land soils. Principal coordinates analysis and dissimilarity analyses jointly indicated that bacterial and fungal communities from each sampling site were quite different. Canonical correspondence analysis and a partial Mantel test showed that the community structures of bacteria and fungi were mainly affected by clay, pH, water soluble organic carbon (WSOC), and total soluble nitrogen (TN). Co-occurrence network analysis and the associated topological features revealed that the network of the bacterial community was more complex than that of the fungal community. Clay, pH, WSOC, and NH4+-N were major drivers and pH and WSOC were major factors in shaping the network of the bacterial community and the fungal community, respectively. In brief, our results indicated that microbial diversity, co-occurrence network patterns, and their shaping factors differed greatly among soils of distinct land use types in Northeast China. Our data also provided insights into the sustainable use of soils under different land use types.


2018 ◽  
Vol 19 (6) ◽  
pp. 2163-2174
Author(s):  
ELAINE LOREEN C. VILLANUEVA ◽  
INOCENCIO E. BUOT, JR.

Villanueva ELC, Buot, JrIE. 2018. Vegetation analysis along the altitudinal gradient of Mt. Ilong, Halcon Range, Mindoro Island, Philippines. Biodiversitas 19: 2163-2174. The vegetation of Halcon Range is diverse, unique, and culturally important; however, there is a very limited information on its altitudinal distribution and structure, leading to the formation of land uses that trigger problem in sustainable management decisions for the mountain. This study analyzed the vegetation in land use types distribution along the altitudinal gradient of Mt. Ilong, Halcon Range, Mindoro, Philippines. Fourteen plots of 10 x 10m were established along the slope from 100m-1400m elevation. The tree species that were sampled from the plots were subjected to classification and ordination analyses. The dendrogram showed three distinct vegetation zones corresponding land use types: Zone I (agroforest land use zone), Lansium-Artocarpus-Swietenia-Ficus-Nephelium-Mangifera zone; Zone II (forest land use zone), Cyathea-Astronia-Syzygium-Garcinia-Ficus-Psydrax-Diplodiscus zone; and Zone III (forest land use zone), Agathis-Suli-Alitugba-Ardisia zone. Canonical correspondence analysis (CCA) indicated that elevation, temperature and pH level are the environmental variables that strongly influenced the vegetation distribution in various land uses, a characteristic that is similar to other tropical mountains.


2020 ◽  
Author(s):  
Yared Mulat Tefera ◽  
kibebew Kibret Tehaye ◽  
Bobe Bobe Bedadi ◽  
Muktar Mohammed Kedir

Abstract Background:soil quality, which can be inferred using indicators that interact synergistically, is affected by land use types and agricultural management practices. This study assessed the status of soil quality under three adjacent land uses (cultivated, grazing, and fallow) in Kersa sub watershed (622 ha). Soil samples were collected from the surface soil (0-20 cm depth) of the identified land uses with three replications and the soil quality parameters were analysed. A minimum data set of soil quality indicators were selected from physical, chemical, and biological parameters using the literature review and expert opinion method. Linear scoring functions were used to give unit less score for the selected data sets, which were then integrated into a soil quality index (SQI).Results:The results revealed that bulk density, aggregate stability, pH, cation exchange capacity (CEC), available P, and soil organic carbon(SOC) had a significant difference in SQI among the different land uses. The soil quality indices were 0.69 for grazing land, 0.62 for cultivated land, and 0.59 for the fallow land. The SQI of all the land uses fall in the intermediate soil quality (0.55 < SQI < 0.70) class.Conclusion:In almost all the quality indicators assessed, the grazing land was superior to the cultivated and fallow lands. Therefore, implementing management practices that enhance soil quality is imperative for sustainable agricultural production in the study area.


Sign in / Sign up

Export Citation Format

Share Document