Unveiling the relationship between land use types and the temporal signals of crime: An empirical decomposition approach

Author(s):  
Chris Brunsdon ◽  
Jonathan Corcoran

Whilst some land uses are highly criminogenic, others remain largely free of crime. This patterning is a reflection of the types and timing of daily activities that take place in a given land use and the opportunities that this presents for crime. While the criminology literature has developed a rigorous understanding of geographic component of crime, relatively less emphasis has been placed on the temporal dimension. Here, we address this through applying a technique to examine micro-temporal variations in crime at places. This technique adopts a factor approach to model hourly counts of crime across seven land use types (commercial, residential, parkland, agricultural, medical/hospital, industrial and education) to unveil the number and distribution of crime signals across a 24-hour period along with how these signals mix across each land use type. Results reveal clear and distinct differences between crime type and land use, highlighting the diurnal nature of crime patterns and speak to the literature on risky places and risky times. The utility of our approach lies in its capacity to delineate common temporal rhythms and how these rhythms are shared across different land use types.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Belayneh Bufebo ◽  
Eyasu Elias ◽  
Emana Getu

Abstract Background Land use can exert a strong influence on the abundance, diversity, and community composition of soil macro-fauna. This study was conducted to evaluate the effects of four land use types on the abundance and diversity of soil invertebrate macro-fauna communities. These land uses include forest land, grazing land, crop cultivated outfields, and homestead garden fields present at Shenkolla watershed, south central Ethiopia. Monolith sampling of soil macro-fauna was done according to the standard of Tropical Soils Biology and Fertility Institute (TSBF) procedure. Five sampling points were chosen in each land use type and small monolith (25 × 25 × 30 cm) was dug out at 5-m interval along a transect with randomly positioned starting point, but perpendiculars to the slope. A total of 20 monoliths (4 treatments × 5 replications) were taken across all the land use types. Sampling of SIMF was carried out in April 2019 where soil macro-faunas are known to be more active. To evaluate the SIMF community eight parameters were measured: Shannon-Wiener index, Simpson diversity index, Pielou’s measure of evenness, Margalef’s diversity index, the Number of Occurrence Index, Relative abundance, Density (individuals per square meter) of each taxon and density of all SIMF and Bray-Curtis similarity index. The data were further analyzed using ANOVA and a general linear model to determine the variation and the influence of land use type, respectively. Results In general, 332 individuals, 10 orders, 12 families, and 15 species were identified, from the collected samples. There were significant differences (p < 0.05) among the four land use types for SIMF except wireworm, spiders, and millipedes. Overall abundance and diversity were lowest in the crop cultivated outfields and highest in homestead garden fields and forest land. Bray-Curtis’ similarity was highest between the sampled sites s16 and s19 with in the forest land, and lowest (2%) between sites s1 (crop cultivated out fields) and s14 (homestead garden fields). Conclusion The results revealed that the diversity of SIMF was positively influenced by forest land and homestead garden fields and negatively influenced in grazing land and cultivated outfields. Therefore, maintenance of a continuous litter cover at the surface and application of a wide range of organic fertilizers (farmyard manure, household refuse, and compost) is very much critical to prevent the decrease in diversity of SIMF.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1157-1167 ◽  
Author(s):  
C. Y. Niu ◽  
A. Musa ◽  
Y. Liu

Abstract. Land use plays an important role in controlling spatial and temporal variations of soil moisture by influencing infiltration rates, runoff and evapotranspiration, which is important to crop growth and vegetation restoration in semiarid environments, such as Horqin sandy land in north China. However, few studies have been conducted comparing differences of dynamics of soil water conditions and the responses of soil to infiltration under different land use types in semiarid area. Five different land use types were selected to analyze soil moisture variations in relation to land use patterns during the growing season of 2 years. Results showed that soil moisture condition was affected by different land uses in semi-arid sandy soils. The higher soil moisture content among different land uses was exhibited by the grassland, followed by cropland, poplar land, inter-dunes and shrub land. The temporal variations of soil moisture in different land uses were not always consistent with the rainfall due to the dry sequence. Moreover, soil water at the surface, in the root zone and at the deep soil layer indicated statistical differences for different types of land cover. Meanwhile, temporal variations of soil moisture profile changed with precipitation. However, in the deep soil layer, there was a clear lag in response to precipitation. In addition, seasonal variations of profile soil moisture were classified into two types: increasing and waving types. And the stable soil water layer was at 80–120 cm. Furthermore, the infiltration depth exhibited a positive correlation with precipitation under all land uses. This study provided an insight into the implications for land and agricultural water management in this area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Ren ◽  
Jinbo Zhang ◽  
Hamidou Bah ◽  
Christoph Müller ◽  
Zucong Cai ◽  
...  

AbstractSoil gross nitrogen (N) transformations could be influenced by land use change, however, the differences in inherent N transformations between different land use soils are still not well understood under subtropical conditions. In this study, an 15N tracing experiment was applied to determine the influence of land uses on gross N transformations in Regosols, widely distributed soils in Southwest China. Soil samples were taken from the dominant land use types of forestland and cropland. In the cropland soils, the gross autotrophic nitrification rates (mean 14.54 ± 1.66 mg N kg−1 day−1) were significantly higher, while the gross NH4+ immobilization rates (mean 0.34 ± 0.10 mg N kg−1 day−1) were significantly lower than those in the forestland soils (mean 1.99 ± 0.56 and 6.67 ± 0.74 mg N kg−1 day−1, respectively). The gross NO3− immobilization and dissimilatory NO3− reduction to NH4+ (DNRA) rates were not significantly different between the forestland and cropland soils. In comparison to the forestland soils (mean 0.51 ± 0.24), the cropland soils had significantly lower NO3− retention capacities (mean 0.01 ± 0.01), indicating that the potential N losses in the cropland soils were higher. The correlation analysis demonstrated that soil gross autotrophic nitrification rate was negatively and gross NH4+ immobilization rate was positively related to the SOC content and C/N ratio. Therefore, effective measures should be taken to increase soil SOC content and C/N ratio to enhance soil N immobilization ability and NO3− retention capacity and thus reduce NO3− losses from the Regosols.


2019 ◽  
Vol 47 (7) ◽  
pp. 1219-1236 ◽  
Author(s):  
Ha Na Im ◽  
Chang Gyu Choi

This study proposes an alternative to the conventional entropy-based land use mix index, which is generally used to measure the diversity of land use. Pedestrian volume was selected as the dependent variable as it represents the vitality of districts, which many recent urban studies now consider important. The study investigates an entropy-based weighted land use mix index, which is weighted by different land use types. For the index, different areas are needed to generate a unit of pedestrian volume, whose measure is m2/person/day. The study demonstrates that this alternative is more effective than the existing conventionally used entropy-based land use mix index for explaining pedestrian volume. The research confirms that the conventionally used entropy-based land use mix index can have a positive or negative impact depending on the land use characteristics of the survey points because the conventionally used entropy-based land use mix index has a non-linear relationship with pedestrian volume. By analysing 9727 surveyed locations of pedestrian volume in Seoul, Korea, the study demonstrates that the weighted land use mix index, rather than the conventionally used entropy-based land use mix index, can improve the explanatory power of the estimation model for the relationship between pedestrian volume and built environments, showing consistent results throughout the empirical analysis. In future built-environment studies, the utility of the weighted land use mix index is expected to improve if studies include how to find the accurate weighting of the land use in estimating the pedestrian volume.


Author(s):  
Durga D. Poudel ◽  
Timothy W. Duex ◽  
Roshan Poudel

Drinking water security is increasingly becoming a global concern in recent decades. The mid-hill region of Nepal is also experiencing serious water shortages in recent years. In order to assess the availability of drinking water in the mid-hill regions of Nepal, we studied hydrogeology, land use types and collected water samples from 30 springs in Kavre, Kahmandu Valley, Nuwakot and Tanahu in Nepal between July 17-September 12, 2017. For each sampling spring, while surrounding land use type (mixed, agriculture, urban, vegetation) and spring type (fracture, depression, contact) were determined through field observation, the field pH, conductivity and temperature was determined using relevant probes and thermometers. Water samples were collected in 1L and 165mL plastic bottles for chemical and total coliform determination, respectively, in the lab. Bottles were rinsed twice using spring water before filling them with sample water, then stored in an ice chest, and brought to the lab. In the laboratory, turbidity, conductivity, Ca, Mg, HCO3, SO4, Na, NO3, Cl, Fe, As, and total coliform were determined using standard methods. Spring water in agricultural areas showed significantly higher suspended solids compared to other land use types whereas spring water in urban areas showed significantly higher dissolved substances. By spring type, turbidity and conductivity values and the concentration of dissolved constituents (Ca, Mg, HCO3, SO4, NO3, and Cl) were ranked in the order of fracture < contact < depression. Na and Fe concentration were in the order of fracture = contact < depression. By land-use type, conductivity and dissolved constituents (Ca, Mg, HCO3) were in the order of agriculture < vegetation < mixed < urban. Whereas urban land use had the highest values for SO4, Na, NO3, and Cl, other land use types showed variable order. Fe concentration was ranked in the order of urban < mixed < vegetation < agriculture. Total coliform was in the order of mixed < agriculture < urban < vegetation. These results indicate that land use type and surface condition, which is possibly associated with human activities, heavily affect spring water properties in the region. These results suggest that drinking water security of mid-hill region of Nepal is threatened heavily due to poor spring water quality. Protection of drinking water sources should be specific to land use type and activities around the springs. Index Terms— three to six pertinent, specific to the paper, keywords added after the abstract, separated by commas.


Author(s):  
Mesfin Kassa ◽  
Wassie Haile ◽  
fassile kebede

Quantity-intensity characteristics are among conventional approaches for studying potassium dynamics and its availability; this was assessed to determine availability in four districts: namely, Sodo Zuria, Damot Gale, Damot Sore, and Boloso Sore at three different land use type viz., enset-coffee, crop land, and grazing land. There was water soluble, ammonium acetate, nitric acid extractable potassium, exchangeable potassium, and non-exchangeable potassium studied in soil samples, which were collected from 0-20 cm depth of each land type. The study revealed that water soluble and ammonium acetate extractable potassium concentrations ranged from 0.04 to 0.42 cmolKg-1 soils enset-coffee and grazing land use types, respectively. The study showed that exchangeable potassium constituted the highest proportion of available potassium, while the proportion of water soluble potassium was found to be the lowest. In this study, non-exchangeable potassium concentrations varied from 0.10 to 0.04cmolKg-1soils for enset-coffee, and crop and grazing land use type. Furthermore, available potassium and exchangeable potassium concentrations were positively correlated with OC(r=0.95***), cation exchange capacity, and sand and clay(r=0.98***). In addition, the K dynamics as impacted by land use types found that the highest change in exchangeable potassium (0.31cmolkg-1soils) and potential buffering capacity (1.79cmolkg-1soils) were noted in crop land use types, whereas the lowest change(1.26cmolkg-1 soils) was observed in the enset-coffee system, The varying properties, potassium status, dynamic and land use type of soils identified in the study areas provided adequate information to design soil potassium management options and further research about the soil in each site. Therefore, application of site specific soil fertility management practices and research can improve soil potassium status and quantity intensity parameters to sustain crop productive soils.


2019 ◽  
Vol 17 (1) ◽  
pp. 105-115 ◽  
Author(s):  
Jiao-Jiao Han ◽  
Xu Duan ◽  
Yang-Yi Zhao ◽  
Meng Li

AbstractSoil moisture, stable hydrogen, and oxygen isotopes were sampled and determined in a demonstration area of soil and moisture conservation at the Laocheng Town of Yuanmou County in Chuxiong Prefecture, Yunnan of three land use types: Leucaena Benth artificial forest, Heteropogon contortus grass field, and farmland. The characteristics of stable hydrogen and oxygen isotopes of soil moisture in these different land use types at different soil depths were analyzed to investigate the regularities in the quantitative formation of soil moisture balance. In terms of forest land, we found that the variable coefficient of hydrogen isotopes in the 0-20 cm soil layer was the smallest, but decreased with depth under 20 cm. While in grassland, the variable coefficient in 80-100 cm was the largest, and decreased with depth above 80 cm. As for farmland, the variable coefficient in the top 20 cm was the largest, followed by 40-60 cm, and the medium 20-40 cm was the smallest. The soil moisture hydrogen isotope values of three land use type were different at surface layer, but prone to be consistent in each type. Along the soil depth in forest land, the hydrogen isotope increased first and then decreased, while increased in the end, and the maximum appeared in 80-100 cm. In grassland, the hydrogen isotope increased initially as the forest land but then decreased continuously, so the maximum was found at 20-40 cm. And in grassland, the hydrogen isotope of all depths were higher than which of forest land and farmland. In same land use type, the hydrogen isotope of soil moisture changed significantly at the surface, and the variation of hydrogen isotopes was obviously decreased along the depth. Our findings could provide reference data which would contribute to the assessment of regional groundwater resources in the dry-hot valley of Yuanmou in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mesfin Kassa Cholbe ◽  
Fassil Kebede Yeme ◽  
Wassie Haile Woldeyohannes

Information on soil fertility status of acid soil of a particular area as affected by land use type is important for developing sound soil management systems for improved and sustainable agricultural productivity. The main objective of this study was to assess the fertility status and effect of land use change on soil physicochemical properties. In this study, adjacent three land use types, namely, enset-coffee, crop, and grazing land use were considered in four districts (i.e., Bolos Sore, Damot Gale, Damot Sore, and Sodo Zuria) of Wolaita Zone, southern Ethiopia. Soil samples were collected from a depth of 0–20 cm from each land use type of the respective districts for physicochemical analyses. The results showed that land use types significantly affected ( P ≤ 0.05 ) soil properties such as bulk density, available P, exchangeable potassium, exchangeable acidity, exchangeable bases (Na, K, Ca, Mg), exchangeable acidity, and CEC. Besides, soil pH, OC, and TN were influenced significantly ( P ≤ 0.05 ) both by districts and land use types. The very strongly acidic soils were found predominantly in the crop and grazing lands whereas a neutral acidity level was found in the enset-coffee land use type of four districts. In conclusion, the study proves that land use type change within the same geographic setting can affect the severity of soil acidity due to over cultivation and rapid organic matter decomposition. Finally, the study recommends an in-depth study and analysis on the root causes in aggravating soil acidity under crop and grazing land use types.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 581
Author(s):  
Markandu Anputhas ◽  
Johannus Janmaat ◽  
Craig Nichol ◽  
Adam Wei

Research Highlights: Forest conservation policies can drive land-use change to other land-use types. In multifunctional landscapes, forest conservation policies will therefore impact on other functions delivered by the landscape. Finding the best pattern of land use requires considering these interactions. Background and Objectives: Population growth continues to drive the development of land for urban purposes. Consequently, there is a loss of other land uses, such as agriculture and forested lands. Efforts to conserve one type of land use will drive more change onto other land uses. Absent effective collaboration among affected communities and relevant institutional agents, unexpected and undesirable land-use change may occur. Materials and Methods: A CLUE-S (Conversion of Land Use and its Effects at Small Scales) model was developed for the Deep Creek watershed, a small sub-basin in the Okanagan Valley of British Columbia, Canada. The valley is experiencing among the most rapid population growth of any region in Canada. Land uses were aggregated into one forested land-use type, one urban land-use type, and three agricultural types. Land-use change was simulated for combinations of two forest conservation policies. Changes are categorized by location, land type, and an existing agricultural land policy. Results: Forest conservation policies drive land conversion onto agricultural land and may increase the loss of low elevation forested land. Model results show where the greatest pressure for removing land from agriculture is likely to occur for each scenario. As an important corridor for species movement, the loss of low elevation forest land may have serious impacts on habitat connectivity. Conclusions: Forest conservation policies that do not account for feedbacks can have unintended consequences, such as increasing conversion pressures on other valued land uses. To avoid surprises, land-use planners and policy makers need to consider these interactions. Models such as CLUE-S can help identify these spatial impacts.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 602
Author(s):  
Ina Aneva ◽  
Petar Zhelev ◽  
Simeon Lukanov ◽  
Mariya Peneva ◽  
Kiril Vassilev ◽  
...  

Studies on the impact of agricultural practices on plant diversity provide important information for policy makers and the conservation of the environment. The aim of the present work was to evaluate wild plant diversity across the agroecosystems in two contrasting regions of Bulgaria; Pazardzhik-Plovdiv (representing agroecosystems in the lowlands) and Western Stara Planina (the Balkan Mountains, representing agroecosystems in the foothills of the mountains). This study conducted a two-year assessment of plant diversity in different types of agricultural and forest ecosystems, representing more than 30 land use types. Plant diversity, measured by species number, was affected by the land use type only in Pazardzhik-Plovdiv region. More pronounced was the effect of the groups of land use types on the diversity, measured by the mean species number per scoring plot. Climatic conditions, measured by 19 bioclimatic variables, were the most important factor affecting plant species diversity. Six bioclimatic variables had a significant effect on the plant diversity, and the effect was more pronounced when the analysis considered pooled data of the two regions. The highest plant diversity was found on grazing land with sparse tree cover, while the lowest one was in the land use types representing annual crops or fallow. The study also established a database on weed species, relevant to agriculture. A number of common weeds were found in the Pazardzhik-Plovdiv region, while the most frequent species in the Western Stara Planina region were indigenous ones. Overall, the natural flora of Western Stara Planina was more conserved; eleven orchid species with conservation significance were found in the pastures and meadows in that region. The present study is the first attempt in Bulgaria to characterize the plant diversity across diverse agroecosystems representing many different land use types and environmental conditions. The results can contribute to nature conservation, biodiversity, and the sustainable use of plant resources.


Sign in / Sign up

Export Citation Format

Share Document