Expression of interleukin-6 (IL-6), signal transducer and activator of transcription-3 (STAT-3) and telomerase in choriocarcinomas

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Luciana Pietro ◽  
Fátima Bottcher-Luiz ◽  
Lício Augusto Velloso ◽  
Joseane Morari ◽  
Marcelo Nomura ◽  
...  

Abstract Blastocyst implantation and neoplastic invasion have some common properties related to tissue invasion, mediated by various cytokines. Aim To compare the expression of IL-6, STAT-3 and telomerase in material of abortions in the first trimester of pregnancy, at term placentas and in choriocarcinomas. Methods Immunohistochemical reactions were performed on formalin fixed and included in paraffin samples from 3 groups: abortions, normal at term placentas and choriocarcinomas. Western Blot and Real-Time PCR assays were performed on fresh material from BeWo cell line and in primary culture cells of normal placenta. Results Immunohistochemical reactions: IL-6 expression was moderate in the first trimester abortion samples and high in at term placentas and choriocarcinomas. STAT-3 was strongly positive in all groups. Telomerase expression was absent in normal at term placentas but was increased in BeWo cells. Conclusion IL-6 and STAT-3 are present in the invasion process of the normal placental development and they are maintained during the malignant transformation to choriocarcinoma. The intense telomerase expression observed in BeWo cells was strongly associated with the malignant phenotype, confirming it as a good marker for cell transformation and tumor progression.

Author(s):  
John C. Garancis ◽  
R. A. Pattillo

Growth of cell system (BeWo-cell line) derived from human gestational choriocarcinoma has been established and continuously maintained in-vitro. Furthermore, it is evident from the previous studies that this cell line has retained the physiological function of the placental trophoblasts, namely the synthesis of human chorionic gonadotrophil(HCG).The BeWo cells were relatively small and possessed single nuclei, thus indicating that this cell line consists exclusively of cytotrophoblasts. In some instances cells appeared widely separated and their lateral surfaces were provided with numerous microvilli (Fig.1).


2018 ◽  
Vol 4 (1) ◽  
pp. 1-5
Author(s):  
Bhaktabatsal Raut ◽  
Shreedhar Acharya

INTRODUCTION: This study was conducted to analyze the medical and surgical methods of first trimester of pregnancy. MATERIAL AND METHODS: A hospital based retrospective study done at Lumbini Zonal Hospital, Butwal over the period of one year, where all the women who had first trimester abortion services were analyzed. Age, parity, education status, failure rates and post abortion contraception were analyzed.RESULTS: There were total of 478 women who had abortion services, of which 244 women had medical method of abortion. Among them 4.89% were teenagers and 11.29% were primigravida and 6.9% were uneducated. The failure rate for medical method was 9% and for surgical method was 1.7%. Most women at their post abortion period asked for condoms, followed by DMPA, IUD and OCP as a method of contraception.CONCLUSION: Failure rate of medical method was high and acceptance of long acting post abortion contraception was low.Journal of Universal College of Medical Sciences (2016) Vol.04 No.01 Issue 13, page: 1-5


2010 ◽  
Vol 207 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Delphine Benaitreau ◽  
Esther Dos Santos ◽  
Marie-Christine Leneveu ◽  
Nadia Alfaidy ◽  
Jean-Jacques Feige ◽  
...  

Adiponectin is an adipokine with insulin-sensitizing, anti-inflammatory, anti-atherogenic, and anti-proliferative effects. The expression of specific adiponectin receptors in the placenta and in the endometrium suggests a role for this cytokine in placental development, but this role has not yet been elucidated. The invasion of trophoblast cells during the first trimester of pregnancy being crucial to placentation process, we have studied adiponectin effects on human trophoblast invasive capacities. We found that adiponectin stimulated human trophoblast cell migration in HTR-8/SVneo cells in a dose-independent manner. In addition, adiponectin also significantly enhanced invasion of HTR-8/SVneo cells and of human extravillous trophoblast from first trimester placenta. These pro-invasive effects of adiponectin in human trophoblasts seem to be mediated in part via increased matrix metalloproteinases (MMP2 and MMP9) activities and via repression of TIMP2 mRNA expression. Our results suggest that adiponectin could be a positive regulator of the early invasion process by modulating the MMP/TIMP balance. Moreover, these results provide an insight into the role of adiponectin in pathological conditions characterized by insufficient or excessive trophoblast invasion.


2018 ◽  
pp. S247-S255 ◽  
Author(s):  
A. MAJALI-MARTINEZ ◽  
S. BARTH ◽  
U. LANG ◽  
G. DESOYE ◽  
M. CERVAR-ZIVKOVIC

The first trimester of pregnancy is characterized by continuous proliferation, invasion and differentiation of cytotrophoblasts. These processes are precisely controlled both, in space and time by molecules such as endothelin-1 (ET-1). ET-1 is expressed in human first trimester trophoblast and is known to stimulate cytotrophoblast proliferation through endothelin A and B receptor subtypes (ETA and ETB), and cytotrophoblast invasion through ETB. However, temporal changes of the ET system during the first trimester of pregnancy have not been previously studied. This study tested the hypothesis that ET-1 release, ETA and ETB expression are increased towards the end of the first trimester of pregnancy (weeks 10-12 vs. weeks 6-9), resulting in increased cytotrophoblast proliferation and invasion. Tissue samples were obtained from 17 surgical pregnancy interruptions (week 6-9: n=9; week 10-12: n=8). After cytotrophoblast isolation, the invasive and proliferative phenotypes were immune-separated by an α6-integrin antibody. Both proliferative and invasive cytotrophoblasts were cultured separately on plastic or Matrigel for 24 h. ET-1 release into the culture medium of both cytotrophoblast subtypes was measured by radioimmunoassay. ETA and ETB mRNA expression was measured by RT-PCR, and the ET-1 effect on cytotrophoblast proliferation and invasion was determined using proliferation and invasion assays, respectively. ET-1 release increased from early to late first trimester of pregnancy in both proliferative (1.8-4.5 fold) and invasive cytotrophoblasts (9.3-28 fold), especially when cultured on Matrigel. This was paralleled by less ETB mRNA on invasive cytotrophoblasts independent of the time period in first trimester, whereas ETA expression was similar on proliferative an invasive cytotrophoblasts. Proliferation and invasion of cytotrophoblasts under control conditions decreased from early to late first trimester. ET-1 stimulated both processes at both periods with the most pronounced effect (7-fold) on invasion in late first trimester. The ET-1/ET-receptor system changes between weeks 6-9 and 10-12 in pregnancy. Our data suggest an autocrine and endocrine ET-1 effect, which is stronger in late than in early first trimester of pregnancy paralleled by different stimulatory effects on trophoblast invasion and proliferation. In general, this suggests time as an additional effector of the critical processes governing placental development in the first trimester of human pregnancy.


2007 ◽  
Vol 48 (8) ◽  
pp. 938-940 ◽  
Author(s):  
W. Ju ◽  
S. C. Kim

Placenta increta during the first trimester of pregnancy is extremely rare. Only a few cases of placenta accreta during the latter half of pregnancy manifesting as a uterine mass have been published. This report describes a case of placenta increta that caused prolonged bleeding after a first-trimester abortion, and was identified by magnetic resonance imaging (MRI) as a heterogeneous mass in the myometrium. This is the first report of a placenta increta detected as a uterine mass after first-trimester dilatation and curettage, and its MRI findings.


2000 ◽  
Vol 164 (2) ◽  
pp. 171-178 ◽  
Author(s):  
K Ogura ◽  
M Sakata ◽  
Y Okamoto ◽  
Y Yasui ◽  
C Tadokoro ◽  
...  

Facilitative glucose transporter-1 (GLUT1) is abundant in trophoblast cells and is responsible for glucose transport in the placenta. However, the change in GLUT expression in human placenta upon trophoblast differentiation remains to be clarified. Therefore, we first examined the localization of GLUT1 and GLUT3 using human first-trimester chorionic villi. We found that GLUT1 and GLUT3 were mainly localized to syncytiotrophoblast and cytotrophoblast cells respectively. We analyzed whether placental GLUT1 and GLUT3 expression changes during differentiation using a human choriocarcinoma (BeWo) cell line which is known to show functional and morphological differentiation in response to cAMP in culture. Treatment of BeWo cells with 8-bromo-cyclicAMP (8-bromo-cAMP) increased the level of hCG secretion and induced cell fusion leading to the formation of large syncytia. Treatment of BeWo cells with 8-bromo-cAMP also resulted in a significant increase in glucose uptake on days 2-3 of culture. The stimulating effect of 8-bromo-cAMP on glucose uptake was concentration dependent. Northern and immunoblot analyses revealed that the levels of mRNA and protein of GLUT1, but not of GLUT3, were significantly increased by 8-bromo-cAMP. These findings suggest that 8-bromo-cAMP stimulates GLUT1 expression with differentiation in BeWo cells.


2019 ◽  
Vol 25 (12) ◽  
pp. 811-824 ◽  
Author(s):  
H Msheik ◽  
S El Hayek ◽  
M Furqan Bari ◽  
J Azar ◽  
W Abou-Kheir ◽  
...  

Abstract In human placenta, alteration in trophoblast differentiation has a major impact on placental maintenance and integrity. However, little is known about the mechanisms that control cytotrophoblast fusion. The BeWo cell line is used to study placental function, since it forms syncytium and secretes hormones after treatment with cAMP or forskolin. In contrast, the JEG-3 cell line fails to undergo substantial fusion. Therefore, BeWo and JEG-3 cells were used to identify a set of genes responsible for trophoblast fusion. Cells were treated with forskolin for 48 h to induce fusion. RNA was extracted, hybridised to Affymetrix HuGene ST1.0 arrays and analysed using system biology. Trophoblast differentiation was evaluated by real-time PCR and immunocytochemistry analysis. Moreover, some of the identified genes were validated by real-time PCR and their functional capacity was demonstrated by western blot using phospho-specific antibodies and CRISPR/cas9 knockdown experiments. Our results identified a list of 32 altered genes in fused BeWo cells compared to JEG-3 cells after forskolin treatment. Among these genes, four were validated by RT-PCR, including salt-inducible kinase 1 (SIK1) gene which is specifically upregulated in BeWo cells upon fusion and activated after 2 min with forskolin. Moreover, silencing of SIK1 completely abolished the fusion. Finally, SIK1 was shown to be at the center of many biological and functional processes, suggesting that it might play a role in trophoblast differentiation. In conclusion, this study identified new target genes implicated in trophoblast fusion. More studies are required to investigate the role of these genes in some placental pathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Melissa J. Marchese ◽  
Shuman Li ◽  
Bin Liu ◽  
Jun J. Zhang ◽  
Liping Feng

BackgroundPer- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants that have become globally ubiquitous in humans and the environment. In utero PFAS exposure is associated with neurodevelopmental effects; however, the mechanism is poorly understood. Brain-derived neurotrophic factor (BDNF) signaling is critical to fetal neurodevelopment during pregnancy and maintains important regulatory roles later in life. This study aims to characterize placental BDNF signaling and investigate whether PFAS exposure disrupts the signaling pathway in placental trophoblast cells.MethodsThe expression and localization of BDNF receptors–p75NTR and TrkB–in first trimester and term human placentas and trophoblast cells were investigated by immunofluorescence staining. To assess the effects of PFAS exposure on the BDNF pathway, BeWo cells were treated with PFAS mixtures that mimicked blood levels in a highly exposed population and major PFAS compounds in the mixture at 0.01, 0.1, 1, and 10 µM concentrations. Changes in pro-BDNF levels and phosphorylation of TrkB receptors were examined by Western blot.ResultsIn first trimester human placentas, TrkB and p75NTR receptors were primarily localized to syncytiotrophoblast and cytotrophoblast cells. At term, TrkB and p75NTR receptors were primarily observed in the placental villous stroma. TrkB receptor staining in trophoblasts was reduced at term, while p75NTR receptor staining was negative. TrkB receptors were confined to the nuclear and perinuclear spaces, and phosphorylation occurred at the Tyr816 residue in BeWo cells. Exposure to PFOS, PFOA, PFBS, and the six-PFAS mixture did not significantly affect BDNF levels or activation (phosphorylation) of TrkB. Treating cells with 1 μM and 10 μM of PFNA resulted in increased TrkB phosphorylation compared to unexposed controls, but BDNF levels were unchanged.ConclusionsBDNF receptors are present in different regions of human placental villi, indicating diverse functions of BDNF signaling in placental development. Our findings suggest that the BDNF pathway in placental trophoblast cells is not disrupted by exposures to PFOS, PFOA, PFBS, and a PFAS mixture, but may be affected by PFNA exposures. Further investigation is needed on how PFAS affects other critical signaling pathways during fetal neurodevelopment.


Sign in / Sign up

Export Citation Format

Share Document