glut1 expression
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 53)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yan Peng ◽  
Li Zhang ◽  
Fanlin Zhou ◽  
Yangyang Wang ◽  
Shijie Li ◽  
...  

Abstract Dysregulated glucose metabolism in the brain is considered to be the underlying cause of Alzheimer's disease (AD). Abnormal glucose metabolism in AD is associated with decreased glucose transporter 1 (GLUT1) and GLUT3 in the brain, but the underlying mechanisms remains unclear. Here, we reported that GLUT1 expression was decreased in N2a/APP695swe cells and GLUT3 expression was not significantly changed. Flow Cytometry analysis showed a significant increase of intracellular ROS content in N2a/APP695swe cells and GLUT1 expression was upregulated after treatment with the ROS scavenger N-acetyl-L-Cysteine (NAC). Cellular glucose uptake and ATP levels were reduced following decreased GLUT1 expression and increased after upregulating GLUT1. Western blot analyses showed that phosphorylation of PI3K/Akt pathway decreased in N2a/APP695swe cells. Aβ levels decreased after upregulation of GLUT1 expression and increased after downregulation of GLUT1. After NAC treatment, PI3K/Akt pathway phosphorylation levels and GLUT1 expression were upregulated, glucose uptake and ATP contents were increased, and Aβ levels were decreased. After adding PI3K/Akt pathway inhibitor LY29004, GLUT1 expression was reduced and Aβ levels were increased. Besides, the increased glucose uptake and ATP contents by the Akt activator SC79 were hindered with the GLUT1 inhibitor WZB117. Aβ levels decreased after SC79 treatment and increased after WZB117 treatment. Overall, our data suggest that ROS reduced GLUT1 expression by inhibiting PI3K/Akt pathway activity resulting in impaired glucose metabolism and scavenging ROS prevents Aβ via activation of PI3K/Akt/GLUT1 pathway in N2a/APP695swe cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kathrin Koedderitzsch ◽  
Ekaterina Zezina ◽  
Lingzi Li ◽  
Matthias Herrmann ◽  
Nadine Biesemann

AbstractTNF is a central cytokine in the pathogenesis of rheumatoid arthritis (RA). Elevated level of TNF causes local inflammation that affects immune cells and fibroblast-like synoviocytes (FLS). Nowadays, only 20–30% of patients experience remission after the standard of care therapy—antibodies against TNF. Interestingly, responders show reduced levels of GLUT1 and GAPDH, highlighting a potential link to cellular metabolism. The aim of the study was to investigate whether TNF directly affects the metabolic phenotype of FLS. Real-time respirometry displayed TNF-induced upregulation of glycolysis along with a modest increase of oxidative phosphorylation in FLS from healthy donors. In addition, TNF stimulation enhanced HIF1A and GLUT1 expression. The upregulation of HIF1A and GLUT1 reflects their enriched level in FLS from RA patients (RA-FLS). The inhibition of TAK1, HIF1a and hexokinase deciphered the importance of TNF/TAK1/HIF1A/glycolysis signaling axis. To prove that inhibition of glycolysis reduced the pathogenic phenotype, we showed that 2-deoxyglucose, a hexokinase inhibitor, partially decreased secretion of RA biomarkers. In summary, we identified a direct role of TNF on glycolytic reprogramming of FLS and confirmed the potency of immunometabolism for RA. Further studies are needed to evaluate the therapeutic impact especially regarding non-responder data.


Author(s):  
Hongtao Liu ◽  
Qing Zhang ◽  
Yinsen Song ◽  
Yibin Hao ◽  
Yunxia Cui ◽  
...  

Abstract Background Emerging evidence demonstrates that lncRNAs play pivotal roles in tumor energy metabolism; however, the detailed mechanisms of lncRNAs in the regulation of tumor glycolysis remain largely unknown. Methods The expression of SLC2A1-AS1 was investigated by TCGA, GEO dataset and qRT-PCR. The binding of GLI3 to SLC2A1-AS1 promoter was detected by Luciferase Reporter Assay System and Ago2-RIP assay. FISH was performed to determine the localization of SLC2A1-AS1 in ESCC cells. Double Luciferase Report assay was used to investigate the interaction of miR-378a-3p with SLC2A1-AS1 and Glut1. Gain-of-function and Loss-of-function assay were performed to dissect the function of SLC2A1-AS1/miR-378a-3p/Glut1 axis in ESCC progression in vitro and in vivo. Results We identified a novel lncRNA SLC2A1-AS1 in ESCC. SLC2A1-AS1 was frequently overexpressed in ESCC tissues and cells, and its overexpression was associated with TNM stage, lymph node metastasis and poor prognosis of ESCC patients. Importantly, GLI3 and SLC2A1-AS1 formed a regulatory feedback loop in ESCC cells. SLC2A1-AS1 promoted cell growth in vitro and in vivo, migration and invasion, and suppressed apoptosis, leading to EMT progression and increased glycolysis in ESCC cells. SLC2A1-AS1 functioned as ceRNA for sponging miR-378a-3p, resulting in Glut1 overexpression in ESCC cells. MiR-378a-3p inhibited cell proliferation and invasion as well as induced apoptosis, resulting in reduced glycolysis, which was partly reversed by SLC2A1-AS1 or Glut1 overexpression in ESCC cells. Conclusion SLC2A1-AS1 plays important roles in ESCC development and progression by regulating glycolysis, and SLC2A1-AS1/miR-378a-3p/Glut1 regulatory axis may be a novel therapeutic target in terms of metabolic remodeling of ESCC patients.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257090
Author(s):  
Xun Liu ◽  
Kiyoshi Yamaguchi ◽  
Kiyoko Takane ◽  
Chi Zhu ◽  
Makoto Hirata ◽  
...  

Isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations and their key effector 2-hydroxyglutarate (2-HG) have been reported to promote oncogenesis in various human cancers. To elucidate molecular mechanism(s) associated with IDH1/2 mutations, we established mouse embryonic fibroblasts (MEF) cells and human colorectal cancer cells stably expressing cancer-associated IDH1R132C or IDH2R172S, and analyzed the change in metabolic characteristics of the these cells. We found that IDH1/2 mutants induced intracellular 2-HG accumulation and inhibited cell proliferation. Expression profile analysis by RNA-seq unveiled that glucose transporter 1 (Glut1) was induced by the IDH1/2 mutants or treatment with 2-HG in the MEF cells. Consistently, glucose uptake and lactate production were increased by the mutants, suggesting the deregulation of glucose metabolism. Furthermore, PI3K/Akt/mTOR pathway and Hif1α expression were involved in the up-regulation of Glut1. Together, these results suggest that Glut1 is a potential target regulated by cancer-associated IDH1/2 mutations.


2021 ◽  
Vol 116 (3) ◽  
pp. e180-e181
Author(s):  
Nilay Kuscu ◽  
Alp Can Prof ◽  
Sinan Ozkavukcu ◽  
Ciler Celik-Ozenci Prof

2021 ◽  
Vol 5 (11) ◽  
Author(s):  
Naru Babaya ◽  
Shinsuke Noso ◽  
Yoshihisa Hiromine ◽  
Yasunori Taketomo ◽  
Fumimaru Niwano ◽  
...  

Abstract Adrenocortical carcinoma (ACC) is a rare tumor, and some histological variants (oncocytic, myxoid, and sarcomatoid ACCs) have been reported in addition to the conventional ACC. Among these subtypes, oncocytic ACC is histologically characterized by the presence of abundant eosinophilic granular cytoplasm in the carcinoma cells owing to the accumulation of mitochondria, which generally yields high 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET). Herein, we report the case of a 21-year-old woman with oncocytic ACC with low FDG uptake on PET scan. Her circulating levels of androgens were high, and androgen-synthesis enzymes were detected in carcinoma cells. The patient also had hypocholesterolemia. However, glucose transporter 1 (GLUT1) was not detected in the tumor, which was considered to account for the low FDG uptake by the tumor. To the best of our knowledge, this is the first case of low FDG uptake by oncocytic ACC without GLUT1 expression. Additionally, since hypocholesterolemia was reported in 3 previous reports of androgen-producing tumors, a possible correlation between androgenicity in adrenal tumors and the development of hypocholesterolemia could be postulated; however, further investigations are needed for clarification. This case highlights important information regarding the diversity of ACC and its impact on hypocholesterolemia.


Author(s):  
Yuanyuan Han ◽  
Qixin Chen ◽  
Lili Zhang ◽  
Waruna Lakmal Dissanayaka

ObjectivesPost-implantation survival and timely vascularization of stem-cell based constructs are critical factors in achieving successful outcomes in tissue regeneration approaches. Hypoxia inducible factor-1α (HIF-1α) is known to mediate adaptive functions to ischemic stress in many different cell types. The current study aimed to explore the role of HIF-1α in post-implantation survival and angio-/vasculogenesis of stem cells from human exfoliated deciduous teeth (SHED).MethodsHIF-1α in SHED was suppressed using siRNA or chemical inhibitor (YC-1) and used in Matrigel plug assay conducted on severe combined immunodeficient mice. The plugs were retrieved on day 3 or 7 post-injection and analyzed for hypoxia status, ki67 expression, DNA fragmentation (TUNEL), cellularity, and vascularization by histology and immunohistochemistry for CD31, HIF-1α, pyruvate dehydrogenase kinase-1 (PDK1), hexokinase 2 (HK2), and glucose transporter 1 (Glut1). Cell viability of HIF-1α silenced SHED under different stress conditions (hypoxia, H2O2, and low glucose) in vitro was measured by CCK-8 assay. CM-H2DCFDA and MitoSOX Red were used to detect cellular and mitochondrial reactive oxygen species (ROS) levels, respectively. PDK1, HK2, and Glut1 expression were measured by western blotting and immunofluorescence. Secretory protein levels of vascular endothelial growth factor (VEGF) and the respective paracrine effects on endothelial cell proliferation and migration were detected by ELISA, CCK-8 assay, and trans-well assay, respectively.ResultsHistological analysis of Matrigel plugs showed significantly reduced cell survival in HIF-1α silenced or chemically inhibited SHED groups, which could be attributed to diminished metabolic adaptations as shown by decreased PDK1, HK2, and Glut1 expression. HIF-1α inhibition in SHED also resulted in significantly low blood vessel formation as observed by a low number of perfused and non-perfused vessels of human or mouse CD31 origin. The viability of HIF-1α silenced SHED was significantly affected under hypoxia, H2O2, and low-glucose conditions in vitro, which was reflected in increased cytoplasmic and mitochondrial ROS levels. Significantly reduced levels of VEGF in HIF-1α silenced SHED resulted in decreased paracrine angiogenic effects as shown by low proliferation and migration of endothelial cells.ConclusionHIF-1α plays an indispensable role in post-implantation survival and angio-/vasculogenic properties of SHED by maintaining ROS homeostasis, inducing metabolic adaptations, and VEGF secretion.


2021 ◽  
Author(s):  
Esteban Salazar-Petres ◽  
Daniela Pereira Carvalho ◽  
Jorge Lopez-Tello ◽  
Amanda Sferruzzi-Perri

Fetal growth depends on placental function, which requires energy supplied by mitochondria. Here we investigated whether mitochondrial function in the placenta relates to growth of the lightest and heaviest fetuses of each sex within the litter of mice. Placentas from the lightest and heaviest fetuses were taken to evaluate placenta morphology (stereology), mitochondrial energetics (high-resolution respirometry), and mitochondrial regulators, nutrient transporters, hormone handling and signalling pathways (qPCR and western blotting). We found that mitochondrial complex I and II oxygen consumption rate was greater for placentas supporting the lightest female fetuses, although placental complex I abundance of the lightest females and complexes III and V of the lightest males were decreased compared to their heaviest counterparts. Expression of mitochondrial biogenesis (Nrf1) and fission (Drp1 and Fis1) genes was lower in the placenta from the lightest females, whilst biogenesis-related gene Tfam was greater in the placenta of the lightest male fetuses. Additionally, placental morphology and steroidogenic gene (Cyp17a1 and Cyp11a1) expression were aberrant for the lightest females, but glucose transporter (Glut1) expression lower in only the lightest males versus their heaviest counterparts. Differences in intra-litter placental phenotype were related to sex-dependent changes in the expression of hormone responsive (androgen receptor) and metabolic signalling pathways (AMPK, AKT, PPARγ). Thus, in normal mouse pregnancy, placental structure, function and mitochondrial phenotype are differentially responsive to growth of the female and the male fetus. This study may inform the design of sex-specific therapies for placental insufficiency and fetal growth abnormalities with life-long benefits for the offspring.


Author(s):  
Guihua Zhang ◽  
Rong Dong ◽  
Demiao Kong ◽  
Bo Liu ◽  
Yan Zha ◽  
...  

Background: Lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are two major subtypes of non-small cell lung cancer (NSCLC). Studies have shown that abnormal expression of glucose transport type 1 (GLUT1) in NSCLC patients has been associated with progression, aggressiveness, and poor clinical outcome. However, the clinical effect of GLUT1 expression on LUAD and LUSC is unclear. Objective: This study aims to learn more about the character of GLUT1 in LUAD and LUSC. Methods: A meta-analysis was performed to evaluate the GLUT1 protein level, and bioinformatics analysis was used to detect the GLUT1 mRNA expression level, survival differences, and the infiltration abundance of immune cells in samples from TCGA. Meanwhile, functional and network analysis was conducted to detect important signaling pathways and key genes with the Gene Expression Omnibus (GEO) dataset. Results: Our results showed that GLUT1 was over-expressed both in LUAD and LUSC. LUAD patients with high GLUT1 expression had a poor prognosis. Additionally, GLUT1 was related to B cell and neutrophil infiltration of LUAD. In LUSC, GLUT1 was correlated with tumor purity, B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration. The GEO dataset analysis results suggested GLUT1 potentially participated in the p53 signaling pathway and metabolism of xenobiotics by cytochrome P450 and was associated with KDR, TOX3, AGR2, FOXA1, ERBB3, ANGPT1, and COL4A3 gene in LUAD and LUSC. Conclusion: GLUT1 might be a potential biomarker for aggressive progression and poor prognosis in LUAD, and a therapeutic biomarker in LUSC.


Sign in / Sign up

Export Citation Format

Share Document