scholarly journals Resilience by industrial symbiosis? A discussion on risk, opportunities and challenges for food production in the perspective of the food-energy-water nexus

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Thomas Parker ◽  
Maria Svantemark

Abstract Background Growing population and affluence coupled with climate change puts pressure on the supply of food, water and energy. The three are interconnected, conceptualised in the food-energy-water nexus. In this article, two innovative proposals for food production based on recirculating, multiloop systems are analysed in terms of risk and resilience to illuminate how such industrial symbiotic systems might contribute to food supply resilience, within nexus constraints. Method The proposals encompass greenhouses using waste heat and carbon dioxide combined with recirculating aquaculture systems (RAS) with water, nutrient and energy loops between the two. The two cases are discussed in comparison with the existing major alternatives for production of the respective foodstuffs, using an inventory of global risks as a structure for the discussion. The analysis is relevant to understanding current and emerging risks posed by the unsustainable and interlinked supply of food, energy and water, particularly in the perspective of continued climate change. Results Based on the cases, the concept of distributed, symbiotic food production is discussed in comparison with centralization, i.e. the economies of symbiosis vs economies of scale, focusing especially on how these different economies affect risk and resilience. The discussion centres on a comparative risk analysis between food production in industrial symbiosis and conventional forms. Conclusions The results indicate that distributed symbiotic food production can contribute to resilience to the most threatening of the relevant risks identified and that, therefore, more in depth investigations of how symbiotic systems can contribute to resilience are merited. These, in turn, would warrant an informed discussion on food-production policy.

Salmon are among the most important fishery resources and are produced by commercial fisheries, aquaculture, and propagation. The total production of salmon is now 4.6 million tons, among which 22% comes from commercial fishery production and 78% from aquaculture production, which is the fastest growing food production system in the world. Atlantic salmon and rainbow trout are produced by marine and freshwater aquaculture mainly in Norway and Chile, where environmental impacts are intensively investigated. The biomass of Japanese chum salmon increased steadily from 1970 to 1996 because of the successful improvement of propagation systems. However, the return rate of homing adults has decreased sharply, mainly due to recent unpredictable climate change. New trials of Japanese salmon propagation systems are being carried out by using semi-closed recirculating aquaculture systems and orally administering docosahexaenoic acid.


2019 ◽  
Vol 3 (2) ◽  
pp. 64-75
Author(s):  
Robert Ddamulira

This article addresses three research questions: How does climate change impact food production? What are the governance challenges associated with managing such impacts? What are the conditions for future success in managing the impacts of climate change on food production? To answer these questions, the researcher undertook a document review and analysis to address these various aspects with a major focus on East Africa. The study finds that climate change affects food production largely through its physical impacts on precipitation and increased the frequency of extreme weather events. Within a context of weak governance; climate change further challenges governance institutional structures and mechanisms. The study concludes that specific aspects of the prevailing climate change governance regime require major reforms (particularly the role of the state, corporations and civil society) while other climate governance mechanisms need to be completely overhauled (for example through establishment of a new World Environment Organization).


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Food Security ◽  
2021 ◽  
Author(s):  
Yukyan Lam ◽  
Peter J. Winch ◽  
Fosiul Alam Nizame ◽  
Elena T. Broaddus-Shea ◽  
Md. Golam Dostogir Harun ◽  
...  

AbstractThe rising salinity of land and water is an important, but understudied, climate change-sensitive trend that can exert devastating impacts on food security. This mixed methods investigation combines salinity testing with qualitative research methods to explore these impacts in one of the most salinity-affected regions in the world—the Ganges River Delta. Data collection in 2015 and 2016 undertaken in Bangladesh’s southwest coastal region and Dhaka consisted of 83 in-depth household and stakeholder interviews, six community focus groups, and salinity testing of 27 soil and 45 surface and groundwater samples. Results show that household food production is a multifaceted cornerstone of rural livelihood in the southwest coastal region, and virtually every component of it—from rice plantation and homestead gardening to livestock cultivation and aquaculture—is being negatively affected by salinity. Although households have attempted multiple strategies for adapting food production, effective adaptation remains elusive. At the community level, improved irrigation and floodplain management, as well as restrictions on saltwater aquaculture to abate salinity, are viewed as promising interventions. However, the potential of such measures remains unrealized on a broad scale, as they require a level of external resources and regulation not yet provided by the NGO and government sectors. This study elucidates issues of accessibility, equity, and governance surrounding agricultural interventions for climate change-related salinity adaptation, and its findings can help inform the community of organizations that will increasingly need to grapple with salinity in order to guarantee food security in the context of environmental change.


Conservation ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 151-167
Author(s):  
Joseph Tetreault ◽  
Rachel Fogle ◽  
Todd Guerdat

Operation and effluent treatment costs are limiting factors for the success of recirculating aquaculture systems (RAS) in meeting seafood demand in the United States. Adopting a capture-and-reuse waste management model similar to terrestrial agriculture farmers would allow RAS farmers to monetize effluent and offset production costs. The moisture content and nutrient profile of RAS effluent makes it a potential option for use as a hydroponic fertilizer. Treatment of RAS waste is needed to mineralize particulate-bound nutrients before becoming a viable hydroponic nutrient solution. Anaerobic treatment (AT), a method used by municipal and agricultural waste treatment facilities to reduce total solids, has been shown to successfully mineralize particulate-bound nutrients from RAS effluent. Continuously mixed anaerobic batch bioreactors were used to evaluate the degree to which AT may mineralize particulate-bound nutrients in solid RAS waste. Concentrations of twelve different macro- and micro-nutrients were analyzed in the waste before and after treatment. Effluent samples were analyzed to determine the fraction of each nutrient in the solid and aqueous forms. This study showed that AT is an effective method to mineralize particulate-bound nutrients in RAS effluent and the mineralization rate data may be used to design a pilot-scaled flow-through RAS effluent treatment system.


Sign in / Sign up

Export Citation Format

Share Document