scholarly journals Protecting the grid topology and user consumption patterns during state estimation in smart grids based on data obfuscation

2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Lakshminarayanan Nandakumar ◽  
Gamze Tillem ◽  
Zekeriya Erkin ◽  
Tamas Keviczky

Abstract Smart grids promise a more reliable, efficient, economically viable, and environment-friendly electricity infrastructure for the future. State estimation in smart grids plays a pivotal role in system monitoring, reliable operation, automation, and grid stabilization. However, the power consumption data collected from the users during state estimation can be privacy-sensitive. Furthermore, the topology of the grid can be exploited by malicious entities during state estimation to launch attacks without getting detected. Motivated by the essence of a secure state estimation process, we consider a weighted-least-squares estimation carried out batch-wise at repeated intervals, where the resource-constrained clients utilize a malicious cloud for computation services. We propose a secure masking protocol based on data obfuscation that is computationally efficient and successfully verifiable in the presence of a malicious adversary. Simulation results show that the state estimates calculated from the original and obfuscated dataset are exactly the same while demonstrating a high level of obscurity between the original and the obfuscated dataset both in time and frequency domain.

2018 ◽  
Vol 56 (2) ◽  
pp. 105-123 ◽  
Author(s):  
EA Zamora-Cárdenas ◽  
A Pizano-Martínez ◽  
JM Lozano-García ◽  
VJ Gutiérrez-Martínez ◽  
R Cisneros-Magaña

State estimation is one of the most important processes to perform a reliable monitoring and control of the steady-state operating condition of modern electric power systems; thus, it is currently a fundamental part in the development of research to enhance the monitoring and security of the smart grids operation. This important topic is taught in advanced courses of operation and control of power systems, for graduate and undergraduate power engineering students. However, the most used software packages for simulation and analysis of power systems by researchers, students, and educators have put little attention on the state estimation module. Due to this fact, this paper proposes an approach to develop the computational implementation of a practical educational tool for state estimation of electric power systems using the MATLAB optimization toolbox. In this proposal, the formulation of the state estimation problem consists of developing a general digital code to implement an objective function based on the weighted least squares method. While the lsqnonlin function of the MATLAB optimization toolbox solves the formulated state estimation problem. Simplifying both research and educational processes, this tool helps graduate and undergraduate students to improve learning, understanding, and the times of implementation and development of research in state estimation. Simulations of an equivalent model of the Mexican interconnected power system consisting of 190 buses and 46 machines are used to test and validate the proposal performance.


2019 ◽  
Author(s):  
Madhumita Rano ◽  
Sumanta K Ghosh ◽  
Debashree Ghosh

<div>Combining the roles of spin frustration and geometry of odd and even numbered rings in polyaromatic hydrocarbons (PAHs), we design small molecules that show exceedingly small singlet-triplet gaps and stable triplet ground states. Furthermore, a computationally efficient protocol with a model spin Hamiltonian is shown to be capable of qualitative agreement with respect to high level multireference calculations and therefore, can be used for fast molecular discovery and screening.</div>


2019 ◽  
Vol XVI (4) ◽  
pp. 53-65
Author(s):  
Zahid Khan ◽  
Katrina Lane Krebs ◽  
Sarfaraz Ahmad ◽  
Misbah Munawar

State estimation (SE) is a primary data processing algorithm which is utilised by the control centres of advanced power systems. The most generally utilised state estimator is based on the weighted least squares (WLS) approach which is ineffective in addressing gross errors of input data of state estimator. This paper presents an innovative robust estimator for SE environments to overcome the non-robustness of the WLS estimator. The suggested approach not only includes the similar functioning of the customary loss function of WLS but also reflects loss function built on the modified WLS (MWLS) estimator. The performance of the proposed estimator was assessed based on its ability to decrease the impacts of gross errors on the estimation results. The properties of the suggested state estimator were investigated and robustness of the estimator was studied considering the influence function. The effectiveness of the proposed estimator was demonstrated with the help of examples which also indicated non-robustness of MWLS estimator in SE algorithm.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1153
Author(s):  
Francesco Liberati ◽  
Emanuele Garone ◽  
Alessandro Di Giorgio

This paper presents a review of technical works in the field of cyber-physical attacks on the smart grid. The paper starts by discussing two reference mathematical frameworks proposed in the literature to model a smart grid under attack. Then, a review of cyber-physical attacks on the smart grid is presented, starting from works on false data injection attacks against state estimation. The aim is to present a systematic and quantitative discussion of the basic working principles of the attacks, also in terms of the inner smart grid vulnerabilities and dynamical properties exploited by the attack. The main contribution of the paper is the attempt to provide a unifying view, highlighting the fundamental aspects and the common working principles shared by the attack models, even when targeting different subsystems of the smart grid.


Sign in / Sign up

Export Citation Format

Share Document