Computational development of a practical educational tool for state estimation of power systems using the MATLAB optimization toolbox

2018 ◽  
Vol 56 (2) ◽  
pp. 105-123 ◽  
Author(s):  
EA Zamora-Cárdenas ◽  
A Pizano-Martínez ◽  
JM Lozano-García ◽  
VJ Gutiérrez-Martínez ◽  
R Cisneros-Magaña

State estimation is one of the most important processes to perform a reliable monitoring and control of the steady-state operating condition of modern electric power systems; thus, it is currently a fundamental part in the development of research to enhance the monitoring and security of the smart grids operation. This important topic is taught in advanced courses of operation and control of power systems, for graduate and undergraduate power engineering students. However, the most used software packages for simulation and analysis of power systems by researchers, students, and educators have put little attention on the state estimation module. Due to this fact, this paper proposes an approach to develop the computational implementation of a practical educational tool for state estimation of electric power systems using the MATLAB optimization toolbox. In this proposal, the formulation of the state estimation problem consists of developing a general digital code to implement an objective function based on the weighted least squares method. While the lsqnonlin function of the MATLAB optimization toolbox solves the formulated state estimation problem. Simplifying both research and educational processes, this tool helps graduate and undergraduate students to improve learning, understanding, and the times of implementation and development of research in state estimation. Simulations of an equivalent model of the Mexican interconnected power system consisting of 190 buses and 46 machines are used to test and validate the proposal performance.

2012 ◽  
Vol 433-440 ◽  
pp. 6737-6741 ◽  
Author(s):  
Sanja Veleva ◽  
Danco Davcev

Today’s scarcity of power generation and complex distribution through the electric power systems can not address the trend of increasing demand and consumption of electricity. The monitoring and control of the electric power systems through wired communications require expenses in material, staff, and usually fail in the effective communication for fault diagnostic and protection. In this article we discuss the possibility for the Wireless Sensors and Actuators to address this challenge and provide an optimization of the management for the electric power systems. By embedding the positive influence over the three major power systems: power generation, power delivery, and power utilization, Wireless Sensor and Actuator Networks (WSANs) emerge as an enhancing technology for the next generation of electric power systems, Smart Grids. In this paper, we present an overview of the functionalities of the WSANs in Smart Grids, their advantages over traditional networks, and their architectural characteristics in a way of supervision and control of the power system, by improving the balance between the power supply and demand, and therefore avoiding energy shortages.


Author(s):  
Georgiy A. Bolshanin ◽  
Elena G. Skulina

Problem Statement (Relevance): This paper describes one of the possible variants of the quantitative relationship between the coefficients of the B-form equations and the equations of other forms that evaluate the state of a passive six-terminal network with two input and four output terminals. Such six-terminal network can replace devices, elements or parts of electrical circuits or electric power systems. The coefficients of the B-form equations, as well as the coefficients of the A-form equations, can be determined experimentally. In principle, the coefficients of equations of other forms can also be determined experimentally. However, such experiments are usually difficult to set up and conduct. Thus, it seems to be more reasonable to determine these coefficients from the established quantitative relationship with the previously determined coefficients of the B-form. Objectives: To establish a quantitative relationship between the coefficients of the B-form equations describing the state of the six-terminal network with two input and four output terminals and the coefficients of the G-, H-, Y- and Z-form equations describing the state of the same six-terminal network. Methods Applied: Mathematical modelling and some elements of the theory of multi-terminal networks. Originality: The originality of this research lies in the proposed method of establishing a quantitative relationship between the coefficients of the A-form equations and the equations of other forms describing the state of the passive six-terminal network with two input and four output terminals. Findings: This paper examines one of the possible variants of the quantitative relationship between the coefficients of the B-form equations and the coefficients of the G-, H-, Y- and Z-form equations describing the state of the passive six-terminal network with two input and four output terminals. Some mathematical statements are presented which can help establish such relationship. Practical Relevance: If one knows the values of the B-form equation coefficients, the proposed quantitative relationship between the coefficients of various forms of equations will help build equations of other forms and establish various types of dependencies between the input and output characteristics of an electric power unit, which can be replaced with a six-terminal network with two input and four output terminals. This technique can be used to establish a quantitative relationship between the coefficients of the G-, H-, Y- or Z-form equations and the coefficients of equations of other forms describing the state of different modifications of passive six-terminal networks.


2022 ◽  
pp. 1361-1385
Author(s):  
Amam Hossain Bagdadee ◽  
Li Zhang

The review this article conducts is an extensive analysis of the concept of a smart grid framework with the most sophisticated smart grid innovation and some basic information about smart grid soundness. Smart grids as a new scheme for energy and a future generation framework encourages the expansion of information and progress. The smart grid framework concord will potentially take years. In this article, the focus is on developing smart networks within the framework of electric power systems.


2019 ◽  
Vol 8 (4) ◽  
pp. 105-126
Author(s):  
Amam Hossain Bagdadee ◽  
Li Zhang

The review this article conducts is an extensive analysis of the concept of a smart grid framework with the most sophisticated smart grid innovation and some basic information about smart grid soundness. Smart grids as a new scheme for energy and a future generation framework encourages the expansion of information and progress. The smart grid framework concord will potentially take years. In this article, the focus is on developing smart networks within the framework of electric power systems.


Sign in / Sign up

Export Citation Format

Share Document