scholarly journals Prescribed fire science: the case for a refined research agenda

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
J. Kevin Hiers ◽  
Joseph J. O’Brien ◽  
J. Morgan Varner ◽  
Bret W. Butler ◽  
Matthew Dickinson ◽  
...  

Abstract The realm of wildland fire science encompasses both wild and prescribed fires. Most of the research in the broader field has focused on wildfires, however, despite the prevalence of prescribed fires and demonstrated need for science to guide its application. We argue that prescribed fire science requires a fundamentally different approach to connecting related disciplines of physical, natural, and social sciences. We also posit that research aimed at questions relevant to prescribed fire will improve overall wildland fire science and stimulate the development of useful knowledge about managed wildfires. Because prescribed fires are increasingly promoted and applied for wildfire management and are intentionally ignited to meet policy and land manager objectives, a broader research agenda incorporating the unique features of prescribed fire is needed. We highlight the primary differences between prescribed fire science and wildfire science in the study of fuels, fire behavior, fire weather, fire effects, and fire social science. Wildfires managed for resource benefits (“managed wildfires”) offer a bridge for linking these science frameworks. A recognition of the unique science needs related to prescribed fire will be key to addressing the global challenge of managing wildland fire for long-term sustainability of natural resources.

2009 ◽  
Vol 18 (2) ◽  
pp. 165 ◽  
Author(s):  
Nicole M. Vaillant ◽  
Jo Ann Fites-Kaufman ◽  
Scott L. Stephens

Effective fire suppression and land use practices over the last century have altered forest structure and increased fuel loads in many forests in the United States, increasing the occurrence of catastrophic wildland fires. The most effective methods to change potential fire behavior are to reduce surface fuels, increase the canopy base height and reduce canopy bulk density. This multi-tiered approach breaks up the continuity of surface, ladder and crown fuels. Effectiveness of fuel treatments is often shown indirectly through fire behavior modeling or directly through monitoring wildland fire effects such as tree mortality. The present study investigates how prescribed fire affected fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 90th and 97.5th percentile fire weather conditions on eight National Forests in California. Prescription burning did not significantly change forest structure at most sites. Total fuel loads (litter, duff, 1, 10, 100, and 1000-h) were reduced by 23 to 78% across the sites. The reduction in fuel loads altered potential fire behavior by reducing fireline intensity and increasing torching index and crowning index at most sites. Predicted tree mortality decreased after treatment as an effect of reduced potential fire behavior and fuel loads. To use limited fuel hazard reduction resources efficiently, more effort could be placed on the evaluation of existing fire hazards because several stands in the present study had little potential for adverse fire effects before prescribed fire was applied.


1998 ◽  
Vol 22 (3) ◽  
pp. 138-142 ◽  
Author(s):  
T.A. Barnes ◽  
D.H. Van Lear

Abstract Fire treatments were initiated in 1990 to evaluate effects of low-intensity prescribed fires on composition and structure of the advanced regeneration pool under mature mixed-hardwood stands on upland sites in the Piedmont of South Carolina. One spring burn was as effective as three winter burns in reducing midstory density, considered a prerequisite for subsequent development of oak (Quercus spp.) advanced regeneration. Burning increased the number of oak rootstocks, reduced the relative position of competing species, and increased root-to-shoot ratios of oak stems in the regeneration layer. These favorable effects of fire on oak regeneration outweigh the removal of small, poorly formed oak stems from the midstory/understory strata during burning. Prescribed burning in hardwood forests may solve some of the current oak regeneration problems, especially on better upland sites in the South. South. J. Appl. For. 22(3):138-142.


2016 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Roger D. Ottmar ◽  
J. Kevin Hiers ◽  
Bret W. Butler ◽  
Craig B. Clements ◽  
Matthew B. Dickinson ◽  
...  

The lack of independent, quality-assured field data prevents scientists from effectively evaluating and advancing wildland fire models. To rectify this, scientists and technicians convened in the south-eastern United States in 2008, 2011 and 2012 to collect wildland fire data in six integrated core science disciplines defined by the fire modelling community. These were fuels, meteorology, fire behaviour, energy, smoke emissions and fire effects. The campaign is known as the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE) and sampled 14 forest and 14 non-forest sample units associated within 6 small replicate (<10 ha) and 10 large operational (between 10 and 1000 ha) prescribed fires. Precampaign planning included identifying hosting agencies receptive to research and the development of study, logistics and safety plans. Data were quality-assured, reduced, analysed and formatted and placed into a globally accessible repository maintained by the US Forest Service Research Data Archive. The success of the RxCADRE project led to the commencement of a follow-on larger multiagency project called the Fire and Smoke Model Evaluation Experiment (FASMEE). This overview summarises the RxCADRE project and nine companion papers that describe the data collection, analysis and important conclusions from the six science disciplines.


1990 ◽  
Vol 66 (2) ◽  
pp. 133-137 ◽  
Author(s):  
C. E. Van Wagner

This account of the history and accomplishments of forest fire research in Canada begins with a few basic statistics, and some background on changing attitudes to fire. A historical note on the contributions of Wright and Beall in the 1930's and 1940's follows. Fire science is then divided into six diverse categories: fire behavior, fire management systems, fire ecology, prescribed fire, fire economics, and fire suppression, with a note on developments and accomplishments in each. The references given are examples of the wide range of activity within the whole field of fire-related science and technology, but do not constitute a bibliography.


2010 ◽  
Vol 19 (5) ◽  
pp. 659 ◽  
Author(s):  
David T. Butry ◽  
Jeffrey P. Prestemon ◽  
Karen L. Abt ◽  
Ronda Sutphen

We describe how two important tools of wildfire management, wildfire prevention education and prescribed fire for fuels management, can be coordinated to minimise the combination of management costs and expected societal losses resulting from wildland fire. We present a long-run model that accounts for the dynamics of wildfire, the effects of fuels management on wildfire ignition risk and area burned, and the effects of wildfire prevention education on the ignition risk of human-caused, unintentional wildfires. Based on wildfire management activities in Florida from 2002 to 2007, we find that although wildfire prevention education and prescribed fire have different effects on timing and types of fires, the optimal solution is to increase both interventions. Prescribed fire affects whole landscapes and therefore reduces losses from all wildfire types (including lightning), whereas wildfire prevention education reduces only human-caused ignitions. However, prescribed fire offers a longer-term solution with little short-term flexibility. Wildfire prevention education programs, by comparison, are more flexible, both in time and space, and can respond to unexpected outbreaks, but with limited mitigation longevity. Only when used together in a coordinated effort do we find the costs and losses from unintentional wildfires are minimised.


2019 ◽  
Author(s):  
Eric Rowell ◽  
E. Louise Loudermilk ◽  
Christie Hawley ◽  
Scott Pokswinski ◽  
Carl Seielstad ◽  
...  

AbstractThe spatial pattern of surface fuelbeds in fire-dependent ecosystems are rarely captured using long-standing fuel sampling methods. New techniques, both field sampling and remote sensing, that capture vegetation fuel type, biomass, and volume at super fine-scales (cm to dm) in three-dimensions (3D) are critical to advancing forest fuel and wildland fire science. This is particularly true for computational fluid dynamics fire behavior models that operate in 3D and have implications for wildland fire operations and fire effects research. This study describes the coupling of new 3D field sampling data with terrestrial laser scanning (TLS) data to infer fine-scale fuel mass in 3D. We found that there are strong relationships between fine-scale mass and TLS occupied volume, porosity, and surface area, which were used to develop fine-scale prediction equations using TLS across vegetative fuel types, namely grasses and shrubs. The application of this novel 3D sampling technique to high resolution TLS data in this study represents a major advancement in understanding fire-vegetation feedbacks in highly managed fire-dependent ecosystems.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sophie R. Bonner ◽  
Chad M. Hoffman ◽  
Jeffrey M. Kane ◽  
J. Morgan Varner ◽  
J. Kevin Hiers ◽  
...  

Interest in prescribed fire science has grown over the past few decades due to the increasing application of prescribed fire by managers to mitigate wildfire hazards, restore biodiversity, and improve ecosystem resilience. Numerous ecological disciplines use prescribed fire experiments to provide land managers with evidence-based information to support prescribed fire management. Documenting variation in the context and conditions during prescribed fire experimental treatments is critical for management inference, but inconsistencies in reporting critical experimental details can complicate interpretation. Such details are needed to provide ecological and empirical context for data, facilitate experimental replication, enable meta-analyses, and maximize utility for other scientists and practitioners. To evaluate reporting quality in the recent literature, we reviewed 219 prescribed fire experiments from 16 countries published in 11 refereed journals over the last 5 years. Our results suggest substantial shortcomings in the reporting of critical data that compromise the utility of this research. Few studies had specific information on burning conditions such as fuel moisture (22%), quantitative fuel loads (36%), fire weather (53%), and fire behavior (30%). Further, our analysis revealed that 63% of the studies provided precise coordinates for their study area, while 30% of studies indicated the prescribed fire date. Only 54% of the studies provided descriptions of the ignition characteristics. Given these common deficiencies, we suggest minimum reporting standards for future prescribed fire experiments. These standards could be applied to journal author guidelines, directed to researchers and reviewers by the editor, and promoted in the education of fire ecologists. Establishing reporting standards will increase the quality, applicability, and reproducibility of prescribed fire science, facilitate future research syntheses, and foster actionable science.


2008 ◽  
Vol 17 (3) ◽  
pp. 415 ◽  
Author(s):  
Erik J. Martinson ◽  
Philip N. Omi

Fuel treatments such as prescribed fire are a controversial tenet of wildfire management. Despite a well-established theoretical basis for their use, scant empirical evidence currently exists on fuel treatment effectiveness for mitigating the behaviour and effects of extreme wildfire events. We report the results of a fire severity evaluation of an escaped prescribed fire that burned into an area previously treated with repeated prescribed fires. We observed significantly lower scorch heights, crown damage, and ground char in the treated area. We attribute the moderated fire severity in the treated area to a significantly altered fuel profile created by the repeated prescribed fires. Though our results represent just one treatment area in a single wildfire, they add to a depauperate database and bring us a step closer to defining the conditions under which fuel treatments are an effective pre-suppression strategy.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 52 ◽  
Author(s):  
Devan McGranahan ◽  
Carissa Wonkka

Wildland fire science literacy is the capacity for wildland fire professionals to understand and communicate three aspects of wildland fire: (1) the fundamentals of fuels and fire behavior, (2) the concept of fire as an ecological regime, and (3) multiple human dimensions of wildland fire and the socio-ecological elements of fire regimes. Critical to wildland fire science literacy is a robust body of research on wildland fire. Here, we describe how practitioners, researchers, and other professionals can study, create, and apply robust wildland fire science. We begin with learning and suggest that the conventional fire ecology canon include detail on fire fundamentals and human dimensions. Beyond the classroom, creating robust fire science can be enhanced by designing experiments that test environmental gradients and report standard data on fuels and fire behavior, or at least use the latter to inform models estimating the former. Finally, wildland fire science literacy comes full circle with the application of robust fire science as professionals in both the field and in the office communicate with a common understanding of fundamental concepts of fire behavior and fire regime.


Sign in / Sign up

Export Citation Format

Share Document