scholarly journals Understory community shifts in response to repeated fire and fire surrogate treatments in the southern Appalachian Mountains, USA

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Emily C. Oakman ◽  
Donald L. Hagan ◽  
Thomas A. Waldrop ◽  
Kyle Barrett

Abstract Background Decades of fire exclusion in the southern Appalachian Mountains, USA, has led to changing forest structure and species composition over time. Forest managers and scientists recognize this and are implementing silvicultural treatments to restore forest communities. In this study, conducted at the southern Appalachian Fire and Fire Surrogate Study site in Green River Game Land, North Carolina, USA, we assessed the effects of four fuel-reduction methods (burned four times, B; mechanical treatment two times, M; mechanical treatment two times plus burned four times, MB; and control, C) on the changes in understory community from pre-treatment to post-treatment years (2001 to 2016). We used non-metric multidimensional scaling (NMDS) to determine overall understory community heterogeneity, agglomerative hierarchical cluster analyses (AHCA) to determine finer-scale changes in understory community structure, and indicator species analyses (ISA) to identify the species that were associated with the different fuel reduction treatments over time. Results The NMDS ordination showed little separation between treatment polygons. The AHCA resulted in two main categories of understory species responses based on how treatment plots clustered together: (1) species apparently unaffected by the treatments (i.e., no treatment pattern present within cluster); and (2) species that responded to B, M, or MB treatments (i.e., pattern of treatment plots present within cluster). Nearly half (49.2%) of tree-species plots clustered based on treatments; 60% of shrub-species plots clustered based on treatments; and 64% of herbaceous-species plots clustered based on treatments. Many plots clustered similarly in response to fire-related treatments (B and MB). The ISA identified 11 total tree species: three in B, one in M, and seven in MB; six total shrub species: two in M, and four in MB, and 17 total herbaceous species or genera: one in C, and 16 in MB. Conclusion Fire and fire surrogate treatments did not dramatically shift understory composition after 15 years. However, certain ruderal and early seral species responded positively to MB, which was the most intensive treatment. Modest understory community changes were also observed in B, suggestive of early signs of shifting composition toward a more open forest community after four burns.

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 350 ◽  
Author(s):  
Emily C. Oakman ◽  
Donald L. Hagan ◽  
Thomas A. Waldrop ◽  
Kyle Barrett

Decades of fire exclusion in the Southern Appalachian Mountains led to fuel accumulation and conversion from open oak-pine woodlands to closed-canopy mesic forests dominated by shade-tolerant hardwoods and shrubs that often do not support a diverse understory. Southern Appalachian forest managers and scientists recognize this and are implementing silvicultural treatments such as prescribed burning, mechanical treatments or a combination of these to restore forest structure. In this study, conducted at the Southern Appalachian Fire and Fire Surrogate Study site in Green River Game Land, North Carolina, we assessed the effects of four fuel reduction methods: burned 4x (B), mechanical treatment 2x (M), mechanical treatment 2x + burned 4x (MB), and control (C) on the changes in understory vegetation guilds from pretreatment to post-treatment years (2001–2016). The MB treatment was most effective at meeting the restoration objectives, as it resulted in increases in oak (ΔMB = 23,400 stems/ha) and pine (ΔMB = 900 stems/ha) stem density, importance value - calculated as the sum of relative cover and frequency - for graminoids (ΔMB = 26.0), and density of oak stems >50 cm in height (ΔMB = 7133 stems/ha). The B and M treatments were generally less effective, but nonetheless met a subset of the restoration objectives. The B treatment reduced ericaceous shrub cover (ΔB = −1.2%) and increased oak stems 10–50 cm in height (ΔB = 10,017 stems/ha), while the M treatment resulted in only modest increases of mesic hardwoods, specifically for yellow-poplar (ΔM = 200 stems/ha) and blackgum (ΔM = 200 stems/ha) as compared with other treatments, but significantly increased mountain laurel and rhododendron cover (ΔM = 10.0%). Overall, these fire and fire surrogate treatments had some success in restoring understory structure, but our findings suggest a slow response in understory herbaceous vegetation.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 20
Author(s):  
Christopher J. Dukes ◽  
T. Adam Coates ◽  
Donald L. Hagan ◽  
W. Michael Aust ◽  
Thomas A. Waldrop ◽  
...  

From 2001–2018, a series of fuel reduction and ecosystem restoration treatments were implemented in the southern Appalachian Mountains near Asheville, North Carolina, USA. Treatments consisted of prescribed fire (four burns), mechanical cutting of understory shrubs and mid-story trees (two cuttings), and a combination of both cutting and prescribed fire (two cuts + four burns). Soils were sampled in 2018 to determine potential treatment impacts for O horizon and mineral soil (0–10 cm depth) carbon (C) and nitrogen (N) and mineral soil calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), and pH. Results suggested that mean changes in O horizon C and N and mineral soil C, N, C:N, Ca, and P from 2001–2018 differed between the treatments, but only mineral soil C, N, C:N, and Ca displayed differences between at least one fuel reduction treatment and the untreated control. One soils-related restoration objective was mineral soil N reduction and the cut + burn treatment best achieved this result. Increased organic matter recalcitrance was another priority, but this was not obtained with any treatment. When paired with previously reported fuels and vegetation results from this site, it appeared that continued use of the cut + burn treatment may best achieve long-term management objectives for this site and other locations being managed for similar long-term restoration and fuels management objectives.


2009 ◽  
Vol 257 (9) ◽  
pp. 1939-1944 ◽  
Author(s):  
Charlotte E. Matthews ◽  
Christopher E. Moorman ◽  
Cathryn H. Greenberg ◽  
Thomas A. Waldrop

Castanea ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 128
Author(s):  
John R. Butnor ◽  
Brittany M. Verrico ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
Victor Vankus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document