scholarly journals Arterial spin labeling in the grading of brain gliomas: could it help?

Author(s):  
Ahmed A. ElBeheiry ◽  
Doaa M. Emara ◽  
Amany Abdel-Bary Abdel-Latif ◽  
Mohamed Abbas ◽  
Amal S. Ismail

Abstract Background Gliomas are characterized by high morbidity and mortality with low cure and high recurrence rates, which depends to a great degree on the angiogenesis of the tumor. Assessment of such angiogenesis by perfusion techniques is of utmost importance for the preoperative grading of gliomas. The purpose of this study was to assess the role of arterial spin labeling (ASL) perfusion as a non-contrast MRI technique in the grading of brain gliomas, in correlation with the dynamic susceptibility contrast perfusion imaging (DSC-PI). The study was carried out on 35 patients admitted to the Neurosurgery Department with MRI features of gliomas and sent for further perfusion imaging. Non-contrast ASL followed by DSC-PI was done for all cases. The final diagnosis of the cases was established by histopathology. Results Fourteen patients (14/35) had low-grade gliomas while twenty-one (21/35) had high-grade gliomas. In low-grade gliomas, four cases out of 14 were falsely graded as high-grade tumors showing hyperperfusion on ASL, three of which showed DSC-PI hypoperfusion. In high-grade gliomas, two cases out of 21 were interpreted as an indeterminate grade by ASL showing isoperfusion, however showed hyperperfusion on DSC-PI. ROC curve analysis showed ASL-derived rCBF > 2.08 to have 80.95% sensitivity, 85.71% specificity, and overall accuracy of 82.86% compared to 100% sensitivity, specificity, and accuracy of DSC-PI-derived rCBV and rCBF of > 1.1 and > 0.9, respectively. A significant positive correlation was noted between ASL and DSC-PI with correlation coefficient reaching r = 0.80 between ASL-rCBF and DSC-rCBF (p < 0.01) and r = 0.68 between ASL and DSC-rCBV (p < 0.01). Conclusions ASL is a relatively recent non-contrast perfusion technique that obtains results which are in fair agreement with the more established DSC perfusion imaging making it an alternative method for preoperative assessment of perfusion of gliomas, especially for patients with contraindications to contrast agents.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yuankai Lin ◽  
Jianrui Li ◽  
Zhiqiang Zhang ◽  
Qiang Xu ◽  
Zhenyu Zhou ◽  
...  

Gliomas grading is important for treatment plan; we aimed to investigate the application of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) in gliomas grading, by comparing with the three-dimensional pseudocontinuous arterial spin labeling (3D pCASL). 24 patients (13 high grade gliomas and 11 low grade gliomas) underwent IVIM DWI and 3D pCASL imaging before operation; maps of fast diffusion coefficient (D∗), slow diffusion coefficient (D), fractional perfusion-related volume (f), and apparent diffusion coefficient (ADC) as well as cerebral blood flow (CBF) were calculated and then coregistered to generate the corresponding parameter values. We found CBF andD∗were higher in the high grade gliomas, whereas ADC,D, andfwere lower (allP<0.05). In differentiating the high from low grade gliomas, the maximum areas under the curves (AUC) ofD∗, CBF, and ADC were 0.857, 0.85, and 0.902, respectively. CBF was negatively correlated withfin tumor (r=-0.619,P=0.001). ADC was positively correlated withDin both tumor and white matter (r=0.887,P=0.000andr=0.824,P=0.000, resp.). There was no correlation between CBF andD∗in both tumor and white matter (P>0.05). IVIM DWI showed more efficiency than 3D pCASL but less validity than conventional DWI in differentiating the high from low grade gliomas.


2021 ◽  
Author(s):  
Liming Cao ◽  
Zhanghua Lv ◽  
Weiliang Wang ◽  
Xue Li ◽  
Jing Shi ◽  
...  

Abstract Background: Antibiotic allergy and blood eosinophil percentage (EOS%) may play an important role in the prognosis of gliomas, but few studies reported the relationship between antibiotic allergy and glioma as well as EOS% and glioma. The aim of our study was to estimate the relationships between antibiotic allergy, blood eosinophil percentage (EOS%) and glioma prognosis and to conduct a nomogram model for glioma patients. Estimating the effect of antibiotic allergy and EOS% on glioma prognosis may conduce to finding low-cost and safe prognostic indicators of glioma.Methods: We conducted a retrospective cohort study with 656 glioma patients to estimate the associations between antibiotic allergy, EOS% and glioma prognosis by Kaplan-Meier and Cox regression analysis. Stratified analyses were performed according to tumor grade. We constructed a nomogram with age at diagnosis, gender, tumor grade, antibiotic allergy, EOS% to predict the survival probabilities of glioma. Results: During 12 months follow-up, a total of 227 patients were alive and 318 patients died. Antibiotic allergy and EOS% >1.65 conferred a survival advantage on glioma patients. In the stratified analysis by tumor grade, antibiotic allergy was significantly associated with the prognosis of the prognosis of low-grade gliomas (HR = 0.36, 95%CI: 0.13-0.97) and high-grade gliomas (HR = 0.58, 95%CI: 0.36-0.93) in the univariate Cox regression analysis. However, after adjusting for confounding factors in the multivariate Cox regression analysis, antibiotic allergy was only significantly associated with high-grade gliomas (HRadj = 0.50, 95%CI: 0.30-0.82); the relationship between EOS% and glioma prognosis was restricted to low-grade gliomas (HRadj = 0.50, 95%CI: 0.30-0.82). The C-index of nomogram was 0.74.Conclusions: Antibiotic allergy was a protective prognosis factor of high-grade gliomas, EOS% >1.65 was a protective prognosis factor of low-grade gliomas. The nomogram with antibiotic allergy and EOS% could effectively predict the survival probability of glioma.


Oncotarget ◽  
2018 ◽  
Vol 9 (26) ◽  
pp. 18570-18577 ◽  
Author(s):  
Thomas Lindner ◽  
Hajrullah Ahmeti ◽  
Julia Juhasz ◽  
Michael Helle ◽  
Olav Jansen ◽  
...  

2021 ◽  
pp. 197140092110474
Author(s):  
Ritwik Chakrabarti ◽  
Vivek Gupta ◽  
Sameer Vyas ◽  
Kirti Gupta ◽  
Vikram Singh

Objective To correlate dual energy computed tomography electron density measurements with histopathological cerebral glioma grading to determine whether it can be used as a non-invasive predictor of cerebral glioma grade. Materials and methods Fifty patients with suspected cerebral gliomas on imaging scheduled to undergo resection were included. We tested our hypothesis that with increasing glioma grade, increased tumor cellularity should translate into increased electron density and if a statistically significant difference between electron density of low-grade gliomas and high-grade gliomas is seen, we may have a clinical use of dual energy computed tomography as a non-invasive tool to predict cerebral glioma grade. A pre-operative dual energy computed tomography scan of the brain was performed, and electron density measurements calculated from the solid part of the tumor. Obtaining a ratio with electron density of contralateral normal brain parenchyma normalized these values. The minimum, maximum and mean electron density and their normalized values recorded between high-grade gliomas and low-grade gliomas were compared for presence of statistical significance. Results A statistically significant difference was found between all six parameters recorded (minimum electron density and normalized values, mean electron density and normalized values, maximum electron density and normalized values) between low-grade gliomas and high-grade gliomas. The predictivity ranged from 75% (for minimum electron density and maximum normalized values) to 81.25% (for mean normalized values). All six parameters were found to have statistically significant positive correlation with Ki-67 index. Conclusion Dual energy computed tomography electron density measurements in cerebral gliomas are predictive of pre-operative differentiation of low-grade gliomas from high-grade gliomas and show a linear, statistically significant positive correlation with Ki-67 index.


Medicine ◽  
2019 ◽  
Vol 98 (19) ◽  
pp. e15580
Author(s):  
Min Fu ◽  
Fang Han ◽  
Changchao Feng ◽  
Tao Chen ◽  
Xiaobo Feng

2018 ◽  
Vol 59 (11) ◽  
pp. 1372-1379 ◽  
Author(s):  
Fuminori Miyoshi ◽  
Yuki Shinohara ◽  
Atsushi Kambe ◽  
Keita Kuya ◽  
Atsushi Murakami ◽  
...  

Background Detecting recurrence of glioma on magnetic resonance imaging (MRI) is getting more and more important, especially after administration of new anti-tumor agent. However, it is still hard to identify. Purpose To examine the utility of intravoxel incoherent motion (IVIM) MRI and arterial spin labeling-cerebral blood flow (ASL-CBF) for recurrent glioma after initiation of bevacizumab (BEV) treatment. Material and Methods Thirteen patients (7 men, 6 women; age range = 41–82 years) with glioma (high grade, n = 11; low grade, n = 2) were enrolled in the study. IVIM parameters including apparent diffusion coefficient (ADC), true diffusion coefficient (D), and perfusion fraction (f) were obtained with 14 different b-values. We identified tumor progression during BEV therapy by MRI monitoring consisting of diffusion-weighted imaging (DWI), fluid-attenuated inversion recovery (FLAIR) imaging, and contrast-enhanced T1-weighted (CE-T1W) imaging by measuring tumor area. We also measured each parameter of IVIM and ASL-CBF, and calculated relative ADC (rADC), relative D (rD), relative f (rf), and relative CBF (rCBF) by obtaining the ratio between each area and the contralateral cerebral white matter. We calculated the rate of change (Δ) by subtracting values from those from the preceding MRI study, and obtained Spearman’s rank correlation coefficient (rs). Results Tumor progression was identified in nine patients (high grade, n = 7; low grade, n = 2). Negative correlations were identified between ΔrD and ΔDWI area (rs = –0.583), and between ΔrD and ΔCE-T1W imaging area (rs = –0.605). Conclusion Tumor progression after BEV treatment can be identified by decreasing rD.


Sign in / Sign up

Export Citation Format

Share Document