scholarly journals Design and optimization of nano invasomal gel of Glibenclamide and Atenolol combination: in vitro and in vivo evaluation

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
P. Anitha ◽  
S. V. Satyanarayana

Abstract Background There are many circumstances where chronic disease is associated with other disorders, especially in diseases such as diabetes with noncommunicable disease risk factors, such as hypertension. The current therapies for treating such chronic comorbid diseases are limited and challenging due to the difficulties in overcoming the side effects from complex therapeutic treatment regimen. The present study is aimed to develop and optimize the combinational nano invasomal gel of Glibenclamide (GLB) and Atenolol (ATN) as a novel combination therapy for comorbid treatment of diabetic hypertensive patients. The developed formulations were characterized for various parameters, including in-vitro skin permeation, skin irritation, in-vivo antidiabetic, and antihypertensive activities. Results OCNIG showed that the % entrapment efficiency of GLB is 96.67 ± 0.65% and % entrapment efficiency of ATN is 93.76 ± 0.89%, flux of GLB (240.43 ± 1.76 μg/cm2/h), and flux of ATN (475.2 ± 1.54 μg/cm2/h) which was found to conform to the expected value. The results indicated desired release and permeation profiles. Optimized formulation showed significant pharmacokinetic properties, which shows improvement in bioavailability by 134.30% and 180.32% respectively for two drugs, when compared to marketed oral preparation. Pharmacodynamic studies showed improved and prolonged management of diabetes and hypertension in Wistar rats, compared to oral and drug-loaded nano invasomes formulations. Conclusion Overall, the results showed that nano invasomal gel was found to be a useful and promising transdermal delivery system for the treatment of concurrent diseases.

Author(s):  
AMOL SHETE ◽  
PRIYANKA THORAT ◽  
RAJENDRA DOIJAD ◽  
SACHIN SAJANE

Objective: The objectives of present investigation were to prepare and evaluate proniosomes of neomycin sulphate (NS) by coacervation phase separation method by using sorbitan monostearate (span 60) and lecithin as a surfactant to increase the penetration through the skin and study the effect of concentration of the same. Methods: Proniosomes of neomycin sulphate (NS) were prepared by coacervation phase separation method by using span 60 and lecithin. The effect of concentration of span 60 and lecithin was studied by factorial design. The prepared proniosomes were converted to gel by using carbopol as a gelling agent. The prepared formulations were evaluated for entrapment efficiency, in vitro drug diffusion, in vitro antibacterial activity and in vivo skin irritation test etc. Results: All Formulation showed the percentage entrapment efficiency in the range 38.31±0.05% to 77.96±0.06%, good homogeneity and gel was easily spreadable with minimal of shear. Optimized formulation showed enhanced rate of diffusion in vitro, increase in zone of inhibition against staphylococcus aureus, no skin irritation and showed good stability. Conclusion: The results of present study indicates that proniosomal gel formulated by using combination of span 60, Lecithin, cholesterol can be used to enhance skin delivery of NS because of excellent permeation of drug. Developed proniosomal gel formulation was promising carrier for NS


2014 ◽  
Vol 1061-1062 ◽  
pp. 359-368 ◽  
Author(s):  
Mei Ling Tang ◽  
Li Hua Chen ◽  
Dong Sheng Zhou ◽  
Wei Feng Zhu ◽  
Yong Mei Guan ◽  
...  

A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.


Author(s):  
SEHAM M. SHAWKY ◽  
MAHA K. A. KHALIFA ◽  
HEBA A. EASSA

Objective: To design a controlled topical delivery system of lornoxicam (LX) in order to enhance skin permeation and treatment efficacy. Nanosponges were selected as a novel carrier for this purpose. Methods: Nanosponges were formulated via the emulsion solvent evaporation method using ethyl cellulose (polymer) and polyvinyl alcohol (surfactant). Nanosponge dispersions were characterized for colloidal properties, entrapment efficiency and in vitro release study. The nanosponge formulation (LS1) was then incorporated into carboxymethyl cellulose sodium hydrogels and evaluated for pH, viscosity and in vitro drug release. Skin irritation was evaluated, and anti-inflammatory activity was assessed via rat hind paw edema method. Results: Nanosponges were in the nano-sized range and attained a uniform round shape with a spongy structure. LS1exhibited the highest LX release after 6 h, so it was incorporated as hydrogel. Formulated hydrogels showed acceptable physicochemical parameters (pH, drug content and rheological properties). Skin irritation testing proved LX-loaded nanosponge hydrogel formulation (G1) to be non-irritant. In vivo study revealed an enhanced anti-inflammatory activity of G1 for 6 h (p<0.001). Conclusion: The developed nanosponge hydrogel is an efficient nanocarrier for improved and controlled topical delivery of LX.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 923
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Hibah M. Aldawsari ◽  
Mohammad Husain ◽  
Nazia Khan ◽  
...  

Plumbagin (PLM) is a phytochemical which has shown cytotoxicity against of cancer cells both in vitro and in vivo. However, the clinical application of PLM has been hindered due to poor aqueous solubility and low bioavailability. The aim of the present study was to develop, optimize and evaluate PLM-loaded glycerosome (GM) gel and compare with conventional liposome (CL) for therapeutic efficacy against skin cancer. The GM formulations were optimized by employing design expert software by 3-level 3-factor design. The prepared GMs were characterized in vitro for vesicle size, size distribution, zeta potential, vesicle deformability, drug release, skin permeation, retention, texture, antioxidant and cytotoxicity activities. The optimized formulation showed a vesicle size of 119.20 ± 15.67 nm with a polydispersity index (PDI) of 0.145 ± 0.02, the zeta potential of −27 ± 5.12 mV and entrapment efficiency of 76.42 ± 9.98%. The optimized PLM-loaded GM formulation was transformed into a pre-formed gel which was prepared using Carbopol 934 polymer. The drug diffusion fluxes of CL gel and GM-loaded gel were 23.31 ±6.0 and 79.43 ± 12.43 µg/ cm2/h, respectively. The result of texture analysis revealed the adequate hardness, cohesiveness, consistency, and viscosity of the developed GM-loaded gel compared to CL gel. The confocal images showed that glycerosomal gel has deeper skin layer penetration as compared to the control solution. GM-loaded gel treated rat skin showed significantly (p < 0.05) higher drug accumulation in the dermis, higher cytotoxicity and higher antioxidant activity as compared to CL gel and PLM suspension. Thus, findings revealed that novel GM-loaded gel could be potential carriers for therapeutic intervention in skin cancer.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2014 ◽  
Vol 902 ◽  
pp. 70-75 ◽  
Author(s):  
Aroonsri Priprem ◽  
Vassana Netweera ◽  
Pramote Mahakunakorn ◽  
Nutjaree Pratheepawanit Johns ◽  
Jeffrey Roy Johns

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.


2020 ◽  
Vol 12 (1) ◽  
pp. 38-47 ◽  
Author(s):  
Lalit Kumar ◽  
Puneet Utreja

Objective: The objective of the present work was to develop transethosomes loaded with propranolol hydrochloride using Lipoid S100 as phospholipid, and oleic acid as permeation enhancer and evaluate them for prolonged release effect, in-vitro skin permeation, and in-vivo plasma concentration. Methods: Transethosomes loaded with propranolol hydrochloride were prepared by homogenization method. Furthermore, they were characterized by using Transmission Electron Microscopy (TEM), zeta sizer, Differential Scanning Calorimetry (DSC), and Confocal Laser Scanning Microscopy (CLSM) for in-vitro skin permeation. Plasma concentration profile of transethosomal gel was determined using Sprague Dawley rats and compared with a marketed oral tablet of propranolol hydrochloride. Results: Developed transethosomes loaded with propranolol hydrochloride showed acceptable size (182.7 ± 5.4 nm), high drug entrapment (81.98 ± 2.9%) and good colloidal characteristics [polydispersity index (PDI) = 0.234 ± 0.039, zeta potential = -21.91 ± 0.65 mV]. Transethosomes showed prolonged in-vitro release of propranolol hydrochloride for 24 h. Results of in-vitro skin permeation studies of transethosomal gel showed 74.34 ± 2.33% permeation of propranolol hydrochloride after 24 h and confocal microscopy revealed accumulation of transethosomes in the stratum basale layer of the skin. Transethosomal gel was capable to prolong the in-vivo release of propranolol hydrochloride upto 24 h. The value of peak plasma concentration (Cmax) of propranolol hydrochloride was found to be 93.8 ± 3.6 ng/mL which was very high compared to the marketed oral tablet of propranolol hydrochloride (45.6 ± 3.1 ng/mL). Conclusion: The results suggested that transethosomal gel of propranolol hydrochloride could be a better alternative to oral propranolol hydrochloride as it can avoid various disadvantages of oral propranolol hydrochloride like high dosing frequency, first pass effect, and organ toxicity.


Sign in / Sign up

Export Citation Format

Share Document