scholarly journals LORNOXICAM-LOADED NANOSPONGES FOR CONTROLLED ANTI-INFLAMMATORY EFFECT: IN VITRO/IN VIVO ASSESSMENT

Author(s):  
SEHAM M. SHAWKY ◽  
MAHA K. A. KHALIFA ◽  
HEBA A. EASSA

Objective: To design a controlled topical delivery system of lornoxicam (LX) in order to enhance skin permeation and treatment efficacy. Nanosponges were selected as a novel carrier for this purpose. Methods: Nanosponges were formulated via the emulsion solvent evaporation method using ethyl cellulose (polymer) and polyvinyl alcohol (surfactant). Nanosponge dispersions were characterized for colloidal properties, entrapment efficiency and in vitro release study. The nanosponge formulation (LS1) was then incorporated into carboxymethyl cellulose sodium hydrogels and evaluated for pH, viscosity and in vitro drug release. Skin irritation was evaluated, and anti-inflammatory activity was assessed via rat hind paw edema method. Results: Nanosponges were in the nano-sized range and attained a uniform round shape with a spongy structure. LS1exhibited the highest LX release after 6 h, so it was incorporated as hydrogel. Formulated hydrogels showed acceptable physicochemical parameters (pH, drug content and rheological properties). Skin irritation testing proved LX-loaded nanosponge hydrogel formulation (G1) to be non-irritant. In vivo study revealed an enhanced anti-inflammatory activity of G1 for 6 h (p<0.001). Conclusion: The developed nanosponge hydrogel is an efficient nanocarrier for improved and controlled topical delivery of LX.

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


2014 ◽  
Vol 902 ◽  
pp. 70-75 ◽  
Author(s):  
Aroonsri Priprem ◽  
Vassana Netweera ◽  
Pramote Mahakunakorn ◽  
Nutjaree Pratheepawanit Johns ◽  
Jeffrey Roy Johns

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.


2014 ◽  
Vol 1061-1062 ◽  
pp. 359-368 ◽  
Author(s):  
Mei Ling Tang ◽  
Li Hua Chen ◽  
Dong Sheng Zhou ◽  
Wei Feng Zhu ◽  
Yong Mei Guan ◽  
...  

A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gustavo H. Rodrigues da Silva ◽  
Gabriela Geronimo ◽  
Juan P. García-López ◽  
Lígia N. M. Ribeiro ◽  
Ludmilla D. de Moura ◽  
...  

AbstractAnesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = − 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues.


2020 ◽  
Vol 13 ◽  
Author(s):  
Ankita Dadwal ◽  
Neeraj Mishra ◽  
Raj Kumar Narang

Background: Psoriasis is an autoimmune disease of the skin with lapsing episodes of hyperkeratosis, irritation, and inflammation. Numerous traditional and novel drug delivery systems have been used for better penetration through psoriatic barrier cells and also for retention in the skin. As there is no effective remedy for better penetration and retention is there because of the absence of an ideal carrier for effective and safe delivery of antipsoriatic drugs. Objectives: The main objective of this project is to develop Squalene integrated NLC based carbopol 940 gel to create a local drug depot in skin for improved efficacy against psoriasis. Methods: Homogenization method is used for the formulation of Nanostructured Lipid Carrier and were characterized on the basis of size, entrapment efficiency, polydispersity index (PDI), viscosity, spreadability, DSC, zeta potential, % in vitro release, in vitro skin permeation and retention studies, physical storage stability studies and in vivo studies can use other alternative models for induction of psoriasis by severe redness, swelling macroscopically and microvascular dilation edema lasting for 10 days. Further histopathology study was done to basses of changes in the skin. Conclusion: The optimized formulation of nanostructured lipid carrier-based gel has shown significant sustained release of clobetasol propionate. Further, this formulation has also shown retention in skin because of squalene as it is sebum derived lipid show affinity towards the sebaceous gland.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 577 ◽  
Author(s):  
Wafaa E. Soliman ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed ◽  
Nancy S. Younis ◽  
Heba S. Elsewedy

Background: Curcumin (Cur) possesses a variety of beneficial pharmacological properties including antioxidant, antimicrobial, anti-cancer and anti-inflammatory activities. Nevertheless, the low aqueous solubility and subsequent poor bioavailability greatly limits its effectiveness. Besides, the role of myrrh oil as an essential oil in treating inflammatory disorders has been recently demonstrated. The objective of the current investigation is to enhance Cur efficacy via developing Cur nanoemulgel, which helps to improve its solubility and permeability, for transdermal delivery. Methods: The formulated preparations (Cur gel, emulgel and nanoemulgel) were evaluated for their physical appearance, spreadability, viscosity, particle size, in vitro release and ex vivo drug permeation studies. The in vivo anti-inflammatory activity was estimated using the carrageenan-induced rat hind paw edema method. Results: The formulated Cur-loaded preparations exhibited good physical characteristics that were in the acceptable range of transdermal preparations. The release of Cur from gel, emulgel and nanoemulgel after 12 h was 72.17 ± 3.76, 51.93 ± 3.81 and 62.0 ± 3.9%, respectively. Skin permeation of Cur was significantly (p < 0.05) improved when formulated into nanoemulgel since it showed the best steady state transdermal flux (SSTF) value (108.6 ± 3.8 µg/cm2·h) with the highest enhancement ratio (ER) (7.1 ± 0.2). In vivo anti-inflammatory studies proved that Cur-loaded nanoemulgel displayed the lowest percent of swelling (26.6% after 12 h). Conclusions: The obtained data confirmed the potential of the nanoemulgel dosage form and established the synergism of myrrh oil and Cur as an advanced anti-inflammatory drug.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
P. Anitha ◽  
S. V. Satyanarayana

Abstract Background There are many circumstances where chronic disease is associated with other disorders, especially in diseases such as diabetes with noncommunicable disease risk factors, such as hypertension. The current therapies for treating such chronic comorbid diseases are limited and challenging due to the difficulties in overcoming the side effects from complex therapeutic treatment regimen. The present study is aimed to develop and optimize the combinational nano invasomal gel of Glibenclamide (GLB) and Atenolol (ATN) as a novel combination therapy for comorbid treatment of diabetic hypertensive patients. The developed formulations were characterized for various parameters, including in-vitro skin permeation, skin irritation, in-vivo antidiabetic, and antihypertensive activities. Results OCNIG showed that the % entrapment efficiency of GLB is 96.67 ± 0.65% and % entrapment efficiency of ATN is 93.76 ± 0.89%, flux of GLB (240.43 ± 1.76 μg/cm2/h), and flux of ATN (475.2 ± 1.54 μg/cm2/h) which was found to conform to the expected value. The results indicated desired release and permeation profiles. Optimized formulation showed significant pharmacokinetic properties, which shows improvement in bioavailability by 134.30% and 180.32% respectively for two drugs, when compared to marketed oral preparation. Pharmacodynamic studies showed improved and prolonged management of diabetes and hypertension in Wistar rats, compared to oral and drug-loaded nano invasomes formulations. Conclusion Overall, the results showed that nano invasomal gel was found to be a useful and promising transdermal delivery system for the treatment of concurrent diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Saeed Ebrahimi ◽  
Reza Mahjub ◽  
Rasool Haddadi ◽  
Seyed Yaser Vafaei

Cationic nanocapsules represent a promising approach for topical delivery purposes. We elaborated on a novel formulation based on the cationic nanocapsules to enhance the pharmacodynamic efficacy, user compliance, and photostability of tretinoin (TTN). To achieve this goal, TTN nanocapsules were prepared by the nanoprecipitation method. In order to statistically optimize formulation variables, a Box-Behnken design, using Design-Expert software, was employed. Three independent variables were evaluated: total weight of the cationic acrylic polymer ( X 1 ), oil volume ( X 2 ), and TTN amount ( X 3 ). The particle size and encapsulation efficiency percent (EE%) were selected as dependent variables. The optimal formulation demonstrated spherical morphology under scanning electron microscopy (SEM), optimum particle size of 116.3 nm, and high EE% of 83.2%. TTN-loaded nanocapsules improved photostability compared to its methanolic solution. The in vitro release study data showed that tretinoin was released in a sustained manner compared to the free drug. The ex vivo skin permeation study demonstrated that greater drug deposition into the epidermal region rather than the deep skin was observed with a gel containing TTN-loaded nanocapsules than that of drug solution, respectively. The skin irritation test revealed that the nanoencapsulation of the drug decreased its irritancy compared to the free drug. These results revealed the promising potential of cationic nanocapsules for topical delivery of tretinoin


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Heba S. Elsewedy ◽  
Nancy S. Younis ◽  
Tamer M. Shehata ◽  
Maged E. Mohamed ◽  
Wafaa E. Soliman

Recent progression in investigational studies aiming to integrate natural products and plant oils in developing new dosage forms that would provide optimal therapeutic effect. Therefore, the aim of the present exploration was to inspect the influence of jojoba oil in boosting the anti-inflammatory effect of colchicine natural product. To our knowledge, there is no formulation comprising colchicine and jojoba oil together to form a niosomal emulgel preparation anticipated for topical application. Colchicine is a natural product extracted from Colchicum autumnale that has been evidenced to show respectable anti-inflammatory activity. Owing to its drawbacks and low therapeutic index, it was preferable to be formulated into topical dosage form. The current study inspected colchicine transdermal delivery by developing niosomal preparation as a potential nanocarrier included into emulgel prepared with jojoba oil. Box Behnken design was constructed to develop 17 niosomal emulgel formulations. The optimized colchicine niosomal emulgel was evaluated for its physical characteristics and in vitro release studies. The in vivo anti-inflammatory activity was estimated via carrageenan-induced rat hind paw edema method. The developed colchicine niosomal preparation revealed particle size of 220.7 nm with PDI value 0.22, entrapment efficiency 65.3%. The formulation was found to be stable showing no significant difference in particle size and entrapment efficiency up on storage at 4 °C and 25 °C for 3 months. The optimized colchicine niosomal emulgel exhibited a pH value 6.73, viscosity 4598 cP, and spreadability 38.3 mm. In vitro release study of colchicine from niosomal emulgel formulation was around 52.4% over 6 h. Apparently, the proficient anti-inflammatory activity of colchicine niosomal emulgel was confirmed via carrageenan-induced rat hind paw edema test. Overall, the results recommend the combination of niosomal preparation with jojoba oil-based emulgel that might signify a favorable delivery of anti-inflammatory drug such as colchicine.


2010 ◽  
Vol 60 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Yogeshwar Bachhav ◽  
Vandana Patravale

Formulation of meloxicam gel for topical application: In vitro and in vivo evaluation Skin delivery of NSAIDs offers several advantages over the oral route associated with potential side effects. In the present investigation, topical gel of meloxicam (MLX) was formulated using N-methyl pyrrolidone (NMP) as a solubilizer and Carbopol Ultrez 10® as a gelling polymer. MLX gel was evaluated with respect to different physicochemical parameters such as pH, viscosity and spreadability. Irritation potential of MLX gel was studied on rabbits. Permeation of MLX gel was studied using freshly excised rat skin as a membrane. Anti-inflammatory activity of MLX gel was studied in rats and compared with the commercial formulation of piroxicam (Pirox® gel, 0.5% m/m). Accelerated stability studies were carried out for MLX gel for 6 months according to ICH guidelines. MLX gel was devoid of any skin irritation in rabbits. After 12 h, cumulative permeation of MLX through excised rat skin was 3.0 ± 1.2 mg cm-2 with the corresponding flux value of 0.24 ± 0.09 mg cm-2 h-1. MLX gel exhibited significantly higher anti-inflammatory activity in rats compared to Pirox® gel. Physicochemically stable and non-irritant MLX gel was formulated which could deliver significant amounts of active substance across the skin in vitro and in vivo to elicit the anti-inflammatory activity.


Sign in / Sign up

Export Citation Format

Share Document