scholarly journals FOXP3 expressing CD127lo CD4+ T cells inversely correlate with CD38+ CD8+ T cell activation levels in primary HIV-1 infection

2007 ◽  
Vol 83 (2) ◽  
pp. 254-262 ◽  
Author(s):  
Lishomwa C. Ndhlovu ◽  
Christopher P. Loo ◽  
Gerald Spotts ◽  
Douglas F. Nixon ◽  
Frederick M. Hecht
2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4161-4164 ◽  
Author(s):  
Suha Saleh ◽  
Ajantha Solomon ◽  
Fiona Wightman ◽  
Miranda Xhilaga ◽  
Paul U. Cameron ◽  
...  

Latent HIV-1 infection of resting memory CD4+ T cells represents the major barrier to HIV-1 eradication. To determine whether the CCR7 ligands involved in lymphocyte migration can alter HIV-1 infection of resting CD4+ T cells, we infected purified resting CD4+ T cells after incubation with the chemokines CCL19 and CCL21. Incubation with CCL19 or CCL21 did not alter markers of T-cell activation or proliferation. However, after HIV-1 infection of CCL19- or CCL21-treated CD4+ T-cells, we observed low-level HIV-1 production but high concentrations of integrated HIV-1 DNA, approaching that seen in mitogen-stimulated T-cell blasts. Restimulation of CCL19-treated infected CD4+ T cells resulted in virus production consistent with establishment of postintegration latency. CCR7 ligands facilitate efficient entry of HIV-1 into resting CD4+ T cells. These studies demonstrate a unique action of the chemokines CCL19 and CCL21 and provide a novel model with which to study HIV-1 latency in vitro.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110731 ◽  
Author(s):  
Leslie R. Cockerham ◽  
Janet D. Siliciano ◽  
Elizabeth Sinclair ◽  
Una O'Doherty ◽  
Sarah Palmer ◽  
...  

2002 ◽  
Vol 195 (7) ◽  
pp. 811-823 ◽  
Author(s):  
Dietrich Conze ◽  
Troy Krahl ◽  
Norman Kennedy ◽  
Linda Weiss ◽  
Joanne Lumsden ◽  
...  

The c-Jun NH2-terminal kinase (JNK) signaling pathway is induced by cytokines and stress stimuli and is implicated in cell death and differentiation, but the specific function of this pathway depends on the cell type. Here we examined the role of JNK1 and JNK2 in CD8+ T cells. Unlike CD4+ T cells, the absence of JNK2 causes increased interleukin (IL)-2 production and proliferation of CD8+ T cells. In contrast, JNK1-deficient CD8+ T cells are unable to undergo antigen-stimulated expansion in vitro, even in the presence of exogenous IL-2. The hypoproliferation of these cells is associated with impaired IL-2 receptor α chain (CD25) gene and cell surface expression. The reduced level of nuclear activating protein 1 (AP-1) complexes in activated JNK1-deficient CD8+ T cells can account for the impaired IL-2 receptor α chain gene expression. Thus, JNK1 and JNK2 play different roles during CD8+ T cell activation and these roles differ from those in CD4+ T cells.


1993 ◽  
Vol 90 (23) ◽  
pp. 11094-11098 ◽  
Author(s):  
O K Haffar ◽  
M D Smithgall ◽  
J Bradshaw ◽  
B Brady ◽  
N K Damle ◽  
...  

Infection with the human immunodeficiency virus type 1 (HIV-1) requires T-cell activation. Recent studies have shown that interactions of the T-lymphocyte receptors CD28 and CTLA-4 with their counter receptor, B7, on antigen-presenting cells are required for optimal T-cell activation. Here we show that HIV-1 infection is associated with decreased expression of CD28 and increased expression of B7 on CD4+ T-cell lines generated from seropositive donors by alloantigen stimulation. Loss of CD28 expression was not seen on CD4+ T-cell lines from seronegative donors, but up-regulation of B7 expression was observed upon more prolonged culture. Both T-cell proliferation and interleukin 2 mRNA accumulation in HIV-1-infected cultures required costimulation with exogenous B7 because these events were blocked by CTLA4Ig, a soluble form of CTLA-4 that binds B7 with high avidity. In contrast, levels of HIV-1 RNA were not affected by CTLA4Ig, indicating that regulation of virus transcription in these cultures did not depend upon CD28-B7 engagement. Infected T cells could present alloantigen to fresh, uninfected CD4+ T cells, leading to increased proliferation and virus spread to the activated cells. Both of these events were blocked by CTLA4Ig. Thus, chronic activation of HIV-1-infected CD4+ T cells reduces expression of CD28 and increases expression of B7, thereby enabling these T cells to become antigen-presenting cells for uninfected CD4+ T cells; this might be another mechanism for HIV-1 transmission via T-cell-T-cell contact.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3818-3823 ◽  
Author(s):  
Luca Gattinoni ◽  
Anju Ranganathan ◽  
Deborah R. Surman ◽  
Douglas C. Palmer ◽  
Paul A. Antony ◽  
...  

AbstractCytotoxic T lymphocyte–associated antigen 4 (CTLA-4) maintains peripheral tolerance by suppressing T-cell activation and proliferation but its precise role in vivo remains unclear. We sought to elucidate the impact of CTLA-4 expression on self/tumor-reactive CD8+ T cells by using the glycoprotein (gp) 100–specific T-cell receptor (TCR) transgenic mouse, pmel-1. pmel-1 CLTA-4–/– mice developed profound, accelerated autoimmune vitiligo. This enhanced autoimmunity was associated with a small but highly activated CD8+ T-cell population and large numbers of CD4+ T cells not expressing the transgenic TCR. Adoptive transfer of pmel-1 CLTA-4–/– CD8+ T cells did not mediate superior antitumor immunity in the settings of either large established tumors or tumor challenge, suggesting that the mere absence of CTLA-4–mediated inhibition on CD8+ T cells did not directly promote enhancement of their effector functions. Removal of CD4+ T cells by crossing the pmel-1 CLTA-4–/– mouse onto a Rag-1–/– background resulted in the complete abrogation of CD8+ T-cell activation and autoimmune manifestations. The effects of CD4+ CLTA-4–/– T cells were dependent on the absence of CTLA-4 on CD8+ T cells. These results indicated that CD8+ CLTA-4–/– T-cell–mediated autoimmunity and tumor immunity required CD4+ T cells in which the function was dysregulated by the absence of CTLA-4–mediated negative costimulation.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34521 ◽  
Author(s):  
Corine St. Gelais ◽  
Christopher M. Coleman ◽  
Jian-Hua Wang ◽  
Li Wu

AIDS ◽  
2015 ◽  
pp. 1 ◽  
Author(s):  
Nicolas Ruffin ◽  
Vedran Brezar ◽  
Diana Ayinde ◽  
Cécile Lefebvre ◽  
Julian Schulze Zur Wiesch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document