Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field

2001 ◽  
Vol 20 (4) ◽  
pp. 429-434 ◽  
Author(s):  
Per Avseth ◽  
Tapan Mukerji ◽  
Gary Mavko ◽  
Jorunn Aune Tyssekvam
2008 ◽  
Vol 27 (6) ◽  
pp. 788-797 ◽  
Author(s):  
Per Avseth ◽  
Anders Dræge ◽  
Aart-Jan van Wijngaarden ◽  
Tor Arne Johansen ◽  
Arild Jørstad

2019 ◽  
Vol 38 (5) ◽  
pp. 366-373 ◽  
Author(s):  
Jack Dvorkin

In order to determine a direct hydrocarbon indicator in an oil field formed by low- to medium-porosity fast sandstone, we examine wireline data from four wells. Fluid substitution indicates that the sensitivity of the acoustic impedance and Poisson's ratio to oil-to-brine changes is very small. It appears, however, that due to diagenetic processes, the porosity in the brine-filled strata is noticeably smaller than that in the oil-saturated intervals. This porosity difference makes the impedance in the presence of oil noticeably smaller than that where brine is present. The respective impedance cutoff can serve as a discriminator for fluid detection in the seismically derived acoustic impedance volumes. The lesson learned is that merely relying on a rock-physics tool, such as fluid substitution, may not necessarily provide a fluid-detection recipe. Instead, we need to examine a plethora of natural events that may affect rock properties and then translate these effects into seismically detectable variables.


2021 ◽  
Vol 8 ◽  
Author(s):  
Abrar Alabbad ◽  
Jack Dvorkin ◽  
Yazeed Altowairqi ◽  
Zhou F. Duan

A rock physics based seismic interpretation workflow has been developed to extract volumetric rock properties from seismically derived P- and S-wave impedances, Ip and Is. This workflow was first tested on a classic rock physics velocity-porosity model. Next, it was applied to two case studies: a carbonate and a clastic oil field. In each case study, we established rock physics models that accurately relate elastic properties to the rock’s volumetric properties, mainly the total porosity, clay content, and pore fluid. To resolve all three volumetric properties from only two inputs, Ip and Is, a site-specific geology driven relation between the pore fluid and porosity was derived as a hydrocarbon identifier. In order to apply this method at the seismic spatial scale, we created a coarse-scale elastic and volumetric variables by using mathematical upscaling at the wells. By using Ip and Is thus upscaled, we arrived at the accurate interpretation of the upscaled porosity, mineralogy, and water saturation both at the wells and in a simulated vertical impedance section generated by interpolation between the wells.


1992 ◽  
Vol 10 (4-5) ◽  
pp. 300-320
Author(s):  
Ian W. Thomas ◽  
John D. Collinson ◽  
Colin M. Jones

The Alba Field is contained within block 16/26 of the Central North Sea of the United Kingdom. This oil field was discovered in 1984 by Chevron UK Ltd with the 16/26–5 well and has been appraised by 16 wells and sidetracks. The field is currently being developed and is scheduled to achieve first production around the end of 1993. A 3-D seismic survey, acquired in 1989, has greatly enhanced delineation of the field. It is a NW-SE trending linear feature approximately 5.25 miles (8.5 kms) in length with adjacent satellite structures. The reservoir sands comprise the Nauchlan Member of the Alba Formation (Horda Group) and are primarily of Middle Eocene age. Gross sand thicknesses in excess of 400 ft (120 m) are present within the field area with porosities ranging up to 38% and permeabilities of the order of 2800 mD. The sands were deposited as a series of submarine channel fills whose mutual relationships present problems of detailed interpretation. Channel sandbodies appear to be discontinuous along their length for a variety of reasons including erosive relief on the base of the channel, and partial filling of channels otherwise filled by mud.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1446-1454 ◽  
Author(s):  
Side Jin ◽  
G. Cambois ◽  
C. Vuillermoz

S-wave velocity and density information is crucial for hydrocarbon detection, because they help in the discrimination of pore filling fluids. Unfortunately, these two parameters cannot be accurately resolved from conventional P-wave marine data. Recent developments in ocean‐bottom seismic (OBS) technology make it possible to acquire high quality S-wave data in marine environments. The use of (S)-waves for amplitude variation with offset (AVO) analysis can give better estimates of S-wave velocity and density contrasts. Like P-wave AVO, S-wave AVO is sensitive to various types of noise. We investigate numerically and analytically the sensitivity of AVO inversion to random noise and errors in angles of incidence. Synthetic examples show that random noise and angle errors can strongly bias the parameter estimation. The use of singular value decomposition offers a simple stabilization scheme to solve for the elastic parameters. The AVO inversion is applied to an OBS data set from the North Sea. Special prestack processing techniques are required for the success of S-wave AVO inversion. The derived S-wave velocity and density contrasts help in detecting the fluid contacts and delineating the extent of the reservoir sand.


2021 ◽  
Author(s):  
Bastien Dupuy ◽  
Benjamin Emmel ◽  
Simone Zonetti

<p>More than 750 wildcat wells have been drilled in the Norwegian North Sea since 1966. Some of these wells could pose a risk for the environment, climate, and future H<sub>2</sub> and CO<sub>2</sub> storage projects by being preferred leakage paths for subsurface- and stored- gases (e.g., CH<sub>4</sub>, CO<sub>2 </sub>and/or H<sub>2</sub>). To ensure well integrity, these wells were secured by cement framing the well casing, and by building cement plugs at crucial positions in the well path before abandoning the well. However, in an early stage of exploration the geology of the subsurface was relatively uncertain, and the requirements for plug placing and how to abandon a well were not established and regulated. We analysed data relevant for the quality of a Plugging and Abandonment (P&A) work done on old exploration wells (1979 to 2003) from the Troll gas and oil field in the Norwegian North Sea. The data were extracted from public available well completion reports and the webpage of the Norwegian Petroleum Directorate. The dataset was analysed regarding their availability, plausibility and evaluated towards the present P&A regulations and geological knowledge for offshore Norway. Based on 12 criteria including reporting to the authorities, volumetric assessment of used cement quantities, position and length of the plugs in relation to reservoir- cap-rocks petrophysical conditions, and verification of the cementing job, a final P&A ranking of 31 exploration wells was established.</p><p>Parts of this data were used to build realistic numerical models of P&A'ed well to simulate electromagnetic responses using the finite element software COMSOL Multiphysics. Taking advantage of a dedicated implementation of low frequency ElectroMagnetics (EM), including effective formulations for thin electrical layers, it was possible to study the response of well components to external EM fields, both for the purpose of well detection and well monitoring. Results from the numerical models can be used as benchmark models in a realistic field scale well integrity monitoring approach.</p><p>In our presentation we will show results from the TOPHOLE project including realistic field distributions for different representative well configurations, examples of well detection and monitoring signals, and the ranking evaluation results.</p><p>Acknowledgments: This work is performed with support from the Research Council of Norway (TOPHOLE project Petromaks2-KPN 295132) and the NCCS Centre (NFR project number 257579/E20).</p>


Sign in / Sign up

Export Citation Format

Share Document