A model for the high‐frequency electrical response of wet rocks

Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 775-786 ◽  
Author(s):  
Peter C. Lysne

In experiments on the electrical properties of rocks at high frequencies, the measured current has contributions from both conduction and displacement currents, and these are related to the bulk conductivity and dielectric permittivity, respectively. In the present model, the bulk electrical conductivity of a specimen is taken to be a constant given by Archie’s rule, whereas its frequency‐dependent permittivity is taken to be a generalization of Sillars’ model of a composite dielectric. The generalized Sillars’ model treats the pores as being an assemblage of spheroidally shaped inclusions with different orientations and aspect ratios. The conductivity of these spheroids, that is, the conductivity of the pore fluid, influences the frequency dependence of the permittivity in a manner that is in reasonable accord with available data. Furthermore, when applied to the dielectric data obtained in experiments on saturated rocks, the model yields distributions of pore shapes. These distributions are used to estimate the electrical response of oil‐ and water‐wet rocks that are unsaturated.

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 727-738 ◽  
Author(s):  
Haoping Huang ◽  
Douglas C. Fraser

The interpretation of helicopter‐borne electromagnetic (EM) data is commonly based on the transformation of the data to the apparent resistivity under the assumption that the dielectric permittivity is that of free space and so displacement currents may be ignored. While this is an acceptable approach for many applications, it may not yield a reliable value for the apparent resistivity in resistive areas at the high frequencies now available commercially for some helicopter EM systems. We analyze the feasibility of mapping spatial variations in the dielectric permittivity and resistivity using a high‐frequency helicopter‐borne EM system. The effect of the dielectric permittivity on the EM data is to decrease the in‐phase component and increase the quadrature component. This results in an unwarranted increase in the apparent resistivity (when permittivity is neglected) for the pseudolayer half‐space model, or a decrease in the apparent resistivity for the homogeneous half‐space model. To avoid this problem, we use the in‐phase and quadrature responses at the highest frequency to estimate the apparent dielectric permittivity because this maximizes the response of displacement currents. Having an estimate of the apparent dielectric permittivity then allows the apparent resistivity to be computed for all frequencies. A field example shows that the permittivity can be well resolved in a resistive environment when using high‐frequency helicopter EM data.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB71-WB87 ◽  
Author(s):  
Bernhard Siemon

Frequency-domain helicopter-borne electromagnetic (HEM) data are commonly interpreted using quasistatic approximations in forward and inverse solutions. At high-frequencies ([Formula: see text]), the accuracy of this approach is often insufficient. Implementation of a full solution of the forward problem that includes displacement currents in both subsurface and air, however, may cause singularity problems during numerical evaluation of the secondary field integral using Hankel or Laplace transforms, particularly at high frequencies. These effects can be reduced by a wavenumber shift during numerical evaluation, a transformation of the integral by partial integration, or a combination of both. Based on these corrections, the resulting forward responses obtained with various fast Hankel transforms or numerical Laplace transforms are nearly identical. The inversion of HEM data also requires some modification. For a half-space inversion, the parameter sets, such as look-up tables, linear or polynomial approximations have to be modified for frequencies above some 10 kHz. The quasistatic formulas used in multi-layer inversion procedures have to be replaced by the accurate formulas. Fortunately, singularity problems are restricted to the forward calculation as the derivatives of the Jacobian matrix are not affected. Accurate high-frequency forward and inverse modeling enables a successful usage of helicopter-borne electromagnetics for near-surface investigations and expands the range of applications in environmental and geotechnical issues.


Author(s):  
Can Gonenli ◽  
Hasan Ozturk ◽  
Oguzhan Das

In this study, the effect of crack on free vibration of a large deflected cantilever plate, which forms the case of a pre-stressed curved plate, is investigated. A distributed load is applied at the free edge of a thin cantilever plate. Then, the loading edge of the deflected plate is fixed to obtain a pre-stressed curved plate. The large deflection equation provides the non - linear deflection curve of the large deflected flexible plate. The thin curved plate is modeled by using the finite element method with a four-node quadrilateral element. Three different aspect ratios are used to examine the effect of crack. The effect of crack and its location on the natural frequency parameter is given in tables and graphs. Also, the natural frequency parameters of the present model are compared with the finite element software results to verify the reliability and validity of the present model. This study shows that the different mode shapes are occurred due to the change of load parameter, and these different mode shapes cause a change in the effect of crack.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gotthold Fläschner ◽  
Cosmin I. Roman ◽  
Nico Strohmeyer ◽  
David Martinez-Martin ◽  
Daniel J. Müller

AbstractUnderstanding the viscoelastic properties of living cells and their relation to cell state and morphology remains challenging. Low-frequency mechanical perturbations have contributed considerably to the understanding, yet higher frequencies promise to elucidate the link between cellular and molecular properties, such as polymer relaxation and monomer reaction kinetics. Here, we introduce an assay, that uses an actuated microcantilever to confine a single, rounded cell on a second microcantilever, which measures the cell mechanical response across a continuous frequency range ≈ 1–40 kHz. Cell mass measurements and optical microscopy are co-implemented. The fast, high-frequency measurements are applied to rheologically monitor cellular stiffening. We find that the rheology of rounded HeLa cells obeys a cytoskeleton-dependent power-law, similar to spread cells. Cell size and viscoelasticity are uncorrelated, which contrasts an assumption based on the Laplace law. Together with the presented theory of mechanical de-embedding, our assay is generally applicable to other rheological experiments.


2013 ◽  
Vol 127 (10) ◽  
pp. 952-956 ◽  
Author(s):  
A Goyal ◽  
P P Singh ◽  
A Vashishth

AbstractObjectives:This study aimed to: understand the effect that high intensity noise associated with drilling (during otological surgery) has on hearing in the contralateral ear; determine the nature of hearing loss, if any, by establishing whether it is temporary or persistent; and examine the association between hearing loss and various drill parameters.Methods:A prospective clinical study was carried out at a tertiary centre. Thirty patients with unilateral cholesteatoma and normal contralateral hearing were included. Patients were evaluated pre-operatively and for five days following surgery using high frequency pure tone audiometry, and low and high frequency transient evoked and distortion product otoacoustic emission testing.Results:The findings revealed statistically significant changes in distortion product otoacoustic emissions at high frequencies (p = 0.016), and in transient evoked otoacoustic emissions at both low and high frequencies (p = 0.035 and 0.021, respectively). There was a higher statistical association between otoacoustic emission changes and cutting burrs compared with diamond burrs.Conclusion:Drilling during mastoid surgery poses a threat to hearing in the contralateral ear due to noise and vibration conducted transcranially.


2000 ◽  
Vol 39 (10) ◽  
pp. 1645-1656 ◽  
Author(s):  
Gail M. Skofronick-Jackson ◽  
James R. Wang

Abstract Profiles of the microphysical properties of clouds and rain cells are essential in many areas of atmospheric research and operational meteorology. To enhance the understanding of the nonlinear and underconstrained relationships between cloud and hydrometeor microphysical profiles and passive microwave brightness temperatures, estimations of cloud profiles for an anvil region, a convective region, and an updraft region of an oceanic squall were performed. The estimations relied on comparisons between radiative transfer calculations of incrementally estimated microphysical profiles and concurrent dual-altitude wideband brightness temperatures from the 22 February 1993 flight during the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. The wideband observations (10–220 GHz) are necessary for estimating cloud profiles reaching up to 20 km. The low frequencies enhance the rain and cloud water profiles, and the high frequencies are required to detail the higher-altitude ice microphysics. A microphysical profile was estimated for each of the three regions of the storm. Each of the three estimated profiles produced calculated brightness temperatures within ∼10 K of the observations. A majority of the total iterative adjustments were to the estimated profile’s frozen hydrometeor characteristics and were necessary to match the high-frequency calculations with the observations. This requirement indicates a need to validate cloud-resolving models using high frequencies. Some difficulties matching the 37-GHz observation channels on the DC-8 and ER-2 aircraft with the calculations simulated at the two aircraft heights (∼11 km and 20 km, respectively) were noted, and potential causes were presented.


Author(s):  
Minghui Zheng ◽  
Masayoshi Tomizuka

Vibration with multiple large peaks at high frequencies may cause significant performance degradation and have become a major concern in modern high precision control systems. To deal with such high-frequency peaks, it is proposed to design a frequency-shaped sliding mode controller based on H∞ synthesis. It obtains an ‘optimal’ filter to shape the sliding surface, and thus provides frequency-dependent control allocation. The proposed frequency-shaping method assures the stability in the presence of multiple-peak vibration sources, and minimizes the weighted H∞ norm of the sliding surface dynamics. The evaluation is performed on a simulated hard disk drive with actual vibration sources from experiments, and the effectiveness of large vibration peak suppression is demonstrated.


2019 ◽  
Author(s):  
Yun Zhu ◽  
Dainan Li ◽  
Hai Huang

ABSTRACTRetrieval of synaptic vesicles via endocytosis is essential for maintaining sustained synaptic transmission, especially for neurons that fire action potentials at high frequencies. However, how activity regulates synaptic vesicles recycling is largely unknown. Here we report that Na+ substantially accumulated in the mouse calyx of Held terminals during repetitive high-frequency spiking. Elevated presynaptic Na+ accelerated both slow and rapid forms of endocytosis and facilitated endocytosis overshoot but did not affect the readily releasable pool size, Ca2+ influx, or exocytosis. To examine whether this facilitation of endocytosis is related to the Na+-dependent vesicular content change, we dialyzed increasing concentrations of glutamate into the presynaptic cytosol or blocked the vesicular glutamate uptake with bafilomycin and found the rate of endocytosis was not affected by regulating the glutamate content in the presynaptic terminal. Endocytosis is critically dependent on intracellular Ca2+, and the activity of Na+/Ca2+ exchanger (NCX) may be altered when the Na+ gradient is changed. However, neither NCX blocker nor change of extracellular Na+ concentration affected the endocytosis rate. Moreover, two-photon Ca2+ imaging showed that presynaptic Na+ did not affect the action potential-evoked intracellular Ca2+ transient and decay. Therefore, we revealed a novel mechanism of cytosolic Na+ in accelerating vesicle endocytosis. During high-frequency synaptic transmission, when large amounts of synaptic vesicles are fused, Na+ accumulated in terminals, facilitated vesicle recycling and sustained reliable synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document