ADDITIONAL EVIDENCE ON THE RELATION OF TEMPERATURE TO STRUCTURE IN THE SALT CREEK OIL FIELD, NATRONA COUNTY, WYOMING

Geophysics ◽  
1940 ◽  
Vol 5 (1) ◽  
pp. 47-54
Author(s):  
C. E. Van Orstrand

Observations of bottom hole temperatures in approximately 100 deep wells in the Salt Creek field have been made during the past few years by the Stanolind Oil and Gas Company. These recent observations confirm and extend in a remarkable manner the results obtained in the summers of 1922 and 1923 when it was found from temperature surveys in 21 wells that the temperatures over a considerable portion of the field were definitely related to the structure.


Geophysics ◽  
1940 ◽  
Vol 5 (1) ◽  
pp. 54-55
Author(s):  
Paul Weaver

Mr. Van Orstrand states in his abstract; “it was found from temperature surveys in 21 wells that the temperatures over a considerable portion of the field were definitely related to the structure”; and in commenting on Fig. 2, the author states “the results shown in Fig. 2 prove without question that the temperatures at a given depth diminish rather rapidly in all directions from the crest to the flanks of the dome.”





Author(s):  
М.Р. Масаров ◽  
З.Х. Газабиева ◽  
М.А. Эдильгериев ◽  
А.Х. Меджидов ◽  
Р.Х. Моллаев

Основными проблемами, осложняющими эксплуатацию глубоких скважин (на определенной стадии разработки), являются низкие коллекторские свойства пластов и отложения в призабойной зоне пласта (ПЗП) и подземном оборудовании органических солей, то есть высокоплавких асфальтено-смолистых веществ (АСВ). Это приводит к существенному уменьшению добычи нефти, вплоть до полного прекращения притока из пласта, затрудняет, а в ряде случаев и полностью исключает, возможность проведения глубинных термогидродинамических исследований скважин и мероприятий по воздействию на призабойную зону пласта, вызывает необходимость в дополнительных затратах, связанных со сбором, транспортировкой и подготовкой нефти, что ухудшает технико-экономические показатели разработки нефтяных залежей. Для борьбы с указанными осложнениями разработаны и используются в нефтепромысловой практике большое количество технологических методов и реагентов на базе растворителей фирмы «РИНГО», ингибиторов и растворителей института «Союзнефтепромхим» (СНПХ-7909, СНПХ- 7941, СНПХ-7920М) и другие. Однако указанные реагенты и технологические схемы предназначены для обработок неглубоких скважин, где основную массу отложений составляют соединения парафинового ряда. В условиях отложения высокомолекулярных АСВ они малоэффективны или неприемлемы. В этой связи для условий глубоких высокотемпературных асфальтено-смолообразующих скважин разработаны специальные технологии обработок ПЗП и НКТ. Технология предусматривает использование для удаления и ингибирования отложений АСВ составов, включающих ароматические и предельные углеводороды, поверхностно-активные вещества (ПАВ), а также водные растворы гидратов окиси или силикатов щелочных металлов. Применение смеси растворителей с различной молекулярной структурой основано на различном характере растворимости асфальтено-смолистых и парафиновых веществ. Разработанная технология внедрена на мезозойских скважинах ОАО «Грознефтегаз», что позволило обеспечить безаварийный спуск глубинных приборов для проведения термогидродинамических исследований и значительно увеличить производительность скважин и дополнительно добыть десятки тысяч тонн нефти. The main problems that complicate the operation of deep wells (at a certain stage of development) are low collector properties of formations and deposits in the bottom-hole zone of the formation (PCP) and underground equipment of organic salts, i.e. high-melting asphalteno-resinous substances (ASV). This leads to a significant reduction in oil production, up to the complete termination of the inflow from the formation, makes it difficult, and in some cases completely impossible, to carry out deep thermohydrodynamic studies of wells and measures for impact on the bottom-hole zone of the formation, causes the need for additional costs related to the collection, transportation and preparation of oil, which impairs the technical and economic indicators of development of oil deposits. In order to combat these complications, a large number of technological methods and reagents based on RINGO solvents, inhibitors and solvents of Soyuzneftepromchim Institute (СНПХ-7909, СНПХ-7941, СНПХ-7920М) and others have been developed and used in oil field practice. However, these reagents and process diagrams are designed to treat shallow wells where the bulk of the deposits are paraffin series compounds. Under conditions of deposition of high-malecular ACB, they are ineffective or unacceptable. In this regard, for conditions of deep high-temperature asphalt-resin- forming wells special technologies of treatment of PIP and tubing have been developed. The technology involves the use of compositions comprising aromatic and marginal hydrocarbons, surfactants and aqueous solutions of alkali metal hydroxide or silicate to remove and inhibit ACB deposits. The use of a mixture of solvents with different molecular structures is based on the different solubility of asphalteno- resinous and paraffinic substances. The developed technology was introduced at the Mesozoic wells of OAO Grozneftegas, which allowed to ensure the accident-free descent of deep instruments for thermohydrodynamic research and significantly increase the productivity of wells and additionally produce tens of thousands of tons of oil.





2017 ◽  
Vol 3 (2) ◽  
pp. 177
Author(s):  
Nur Huzeima Mohd Hussain ◽  
Hugh Byrd ◽  
Nur Azfahani Ahmad

Globalisation combined with resources of oil and gas has led to an industrial society in Malaysia.  For the past 30 years, rapid urban growth has shifted from 73% rural to 73% urban population. However, the peak oil crisis and economic issues are threatening the growth of urbanisation and influencing the trends of population mobility. This paper documents the beginnings of a reverse migration (urban-to-rural) in Malaysia.  The method adopted case study that involves questionnaires with the urban migrants to establish the desires, definite intentions and reasons for future migration. Based on this data, it predicts a trend and rate of reverse migration in Malaysia. 



2020 ◽  
Vol 58 (3) ◽  
pp. 397-424
Author(s):  
Jesse Salah Ovadia ◽  
Jasper Abembia Ayelazuno ◽  
James Van Alstine

ABSTRACTWith much fanfare, Ghana's Jubilee Oil Field was discovered in 2007 and began producing oil in 2010. In the six coastal districts nearest the offshore fields, expectations of oil-backed development have been raised. However, there is growing concern over what locals perceive to be negative impacts of oil and gas production. Based on field research conducted in 2010 and 2015 in the same communities in each district, this paper presents a longitudinal study of the impacts (real and perceived) of oil and gas production in Ghana. With few identifiable benefits beyond corporate social responsibility projects often disconnected from local development priorities, communities are growing angrier at their loss of livelihoods, increased social ills and dispossession from land and ocean. Assuming that others must be benefiting from the petroleum resources being extracted near their communities, there is growing frustration. High expectations, real and perceived grievances, and increasing social fragmentation threaten to lead to conflict and underdevelopment.



2021 ◽  
Vol 73 (07) ◽  
pp. 64-64
Author(s):  
Nigel Jenvey

Have you noticed the change in the oil and gas industry over the past year with its engagement in carbon management, decarbonization, and net-zero-emissions targets? Policy support and technology advances in alternative energies have delivered massive cost reduction in renewables more quickly, and to a greater degree, than expected. Over the past few years, more of the world’s capital has been spent on electricity than oil and gas sup-ply, and more than half of all new energy-generation capacity is now renewable. Some elements of society, therefore, have suggested that this is the beginning of the end for the fossil-fuel sector and call for investors to turn away from oil and gas and “leave it in the ground.” In more than a century of almost continuous change, however, the oil and gas industry has a long track record of innovative thinking, creative solutions, and different business models. SPE papers and events that covered decarbonization during the past year show that a wide variety of solutions already exist that avoid, reduce, replace, offset, or sequester greenhouse gas (GHG) emissions. It is clear, therefore, that decarbonization technologies will now be as important as 4D seismic, horizontal wells, and hydraulic fracturing. That is why we now bring you this inaugural Technology Focus feature dedicated to decarbonization. The experience and capability of the entire JPT community in decarbonization is critical. Please enjoy the following summary of three selected papers on the role of natural gas in fuel-switching; carbon capture, use, and storage (CCUS); and hydrogen technologies that deliver the dual challenge of providing more energy with less GHG emission. There are many ways to engage in the SPE decarbonization efforts in the remainder of 2021. Regional events have addressed CCUS, hydrogen, geothermal, and methane. There is also the new SPE Gaia sustainability program to enable and empower all members who wish to engage in the alignment of the future of energy with sustainable development. The Gaia program has an on-demand library of materials, including an existing series on methane, and upcoming similar events on other energy transition, natural capital and regeneration, and social responsibility priorities. Get involved through your SPE section or chapter or contact your regional Gaia liaison to find out what Gaia programming you can support or lead at www.spe.org/en/gaia.



2020 ◽  
pp. 42-45
Author(s):  
J.A. Kerimov ◽  

The implementation of plastic details in various constructions enables to reduce the prime cost and labor intensity of machine and device manufacturing, decrease the weight of design and improve their quality and reliability at the same time. The studies were carried out with the aim of labor productivity increase and substitution of colored and black metals with plastic masses. For this purpose, the details with certain characteristics were selected for further implementation of developed technological process in oil-gas industry. The paper investigates the impact of cylinder and compression mold temperature on the quality parameters (shrinkage and hardness) of plastic details in oil-field equipment. The accessible boundaries of quality indicators of the details operated in the equipment of exploration, drilling and exploitation of oil and gas industry are studied in a wide range of mode parameters. The mathematic dependences between quality parameters (shrinkage and hardness) of the details on casting temperature are specified.



2021 ◽  
Vol 73 (09) ◽  
pp. 50-50
Author(s):  
Ardian Nengkoda

For this feature, I have had the pleasure of reviewing 122 papers submitted to SPE in the field of offshore facilities over the past year. Brent crude oil price finally has reached $75/bbl at the time of writing. So far, this oil price is the highest since before the COVID-19 pandemic, which is a good sign that demand is picking up. Oil and gas offshore projects also seem to be picking up; most offshore greenfield projects are dictated by economics and the price of oil. As predicted by some analysts, global oil consumption will continue to increase as the world’s economy recovers from the pandemic. A new trend has arisen, however, where, in addition to traditional economic screening, oil and gas investors look to environment, social, and governance considerations to value the prospects of a project and minimize financial risk from environmental and social issues. The oil price being around $75/bbl has not necessarily led to more-attractive offshore exploration and production (E&P) projects, even though the typical offshore breakeven price is in the range of $40–55/bbl. We must acknowledge the energy transition, while also acknowledging that oil and natural gas will continue to be essential to meeting the world’s energy needs for many years. At least five European oil and gas E&P companies have announced net-zero 2050 ambitions so far. According to Rystad Energy, continuous major investments in E&P still are needed to meet growing global oil and gas demand. For the past 2 years, the global investment in E&P project spending is limited to $200 billion, including offshore, so a situation might arise with reserve replacement becoming challenging while demand accelerates rapidly. Because of well productivity, operability challenges, and uncertainty, however, opening the choke valve or pipeline tap is not as easy as the public thinks, especially on aging facilities. On another note, the technology landscape is moving to emerging areas such as net-zero; decarbonization; carbon capture, use, and storage; renewables; hydrogen; novel geothermal solutions; and a circular carbon economy. Historically, however, the Offshore Technology Conference began proactively discussing renewables technology—such as wave, tidal, ocean thermal, and solar—in 1980. The remaining question, then, is how to balance the lack of capital expenditure spending during the pandemic and, to some extent, what the role of offshore is in the energy transition. Maximizing offshore oil and gas recovery is not enough anymore. In the short term, engaging the low-carbon energy transition as early as possible and leading efforts in decarbonization will become a strategic move. Leveraging our expertise in offshore infrastructure, supply chains, sea transportation, storage, and oil and gas market development to support low-carbon energy deployment in the energy transition will become vital. We have plenty of technical knowledge and skill to offer for offshore wind projects, for instance. The Hywind wind farm offshore Scotland is one example of a project that is using the same spar technology as typical offshore oil and gas infrastructure. Innovation, optimization, effective use of capital and operational expenditures, more-affordable offshore technology, and excellent project management, no doubt, also will become a new normal offshore. Recommended additional reading at OnePetro: www.onepetro.org. SPE 202911 - Harnessing Benefits of Integrated Asset Modeling for Bottleneck Management of Large Offshore Facilities in the Matured Giant Oil Field by Yukito Nomura, ADNOC, et al. OTC 30970 - Optimizing Deepwater Rig Operations With Advanced Remotely Operated Vehicle Technology by Bernard McCoy Jr., TechnipFMC, et al. OTC 31089 - From Basic Engineering to Ramp-Up: The New Successful Execution Approach for Commissioning in Brazil by Paulino Bruno Santos, Petrobras, et al.



Sign in / Sign up

Export Citation Format

Share Document