Magnetotelluric transect of Long Valley caldera: Resistivity cross‐section, structural implications, and the limits of a 2-D analysis

Geophysics ◽  
1991 ◽  
Vol 56 (7) ◽  
pp. 926-940 ◽  
Author(s):  
P. E. Wannamaker ◽  
P. M. Wright ◽  
Zhou Zi‐xing ◽  
Li Xing‐bin ◽  
Zhao Jing‐xiang

Twenty‐four magnetotelluric (MT) soundings have been collected in an east‐west profile across the center of Long Valley caldera. The average station spacing is approximately 1 km and appears adequate to sample the important features of the upper crustal and deeper resistivity structures. Additional control on the shallowest resistivity is provided by a continuous profile of time domain electromagnetic soundings coincident with the western portion of the MT line. Our MT data set reveals numerous resistivity structures which illuminate the evolution and present state of the Long Valley system. Many of these have been quantified through two‐dimensional (2-D) finite element modeling emphasizing the transverse magnetic (TM) mode. Important structural components include low‐resistivity layers 0.5–1.5 km deep under the eastern half of the caldera, beneath the axial graben of the resurgent dome, and under the west caldera moat. Most of this layering appears to lie in post‐caldera Early Rhyolite tuffs, and the uppermost unwelded Bishop Tuff. These rhyolite units have been observed to be porous and highly altered and to commonly contain Pleistocene intercalated lacustrine clays. The remainder and majority of the Bishop Tuff appears highly resistive. A low resistivity layer also occurs below the axial graben near the base of the Bishop Tuff (1.5 km). Hydrothermal fluids or alteration in precaldera volcanic strata or, less likely, carbonaceous metasediments may be the cause of this. Resistive, probably crystalline basement at high levels is apparent beneath the center of resurgence. Low resistivities are modeled at a depth around 5 km below the entire west moat and central graben and may represent a zone of hydrothermal fluids released from magma crystallization, with potential magmatic contributions at greater depths. The correspondence between this low resistivity and teleseismic delay and low density zones found in other studies is quite striking. A subtle anomaly in the transverse electric (TE) mode impedance is weakly suggestive of a midcrustal conductive axis centered beneath the central graben and resurgent dome. However, it cannot be simulated by two‐dimensional transverse electric calculations and requires a full three‐dimensional evaluation to ensure that the anomaly does not represent resistivity complexity in just the upper few kilometers. A fundamental, caldera‐wide 3-D effect is documented by comparison of observed and computed TE impedance and vertical magnetic field data. The abrupt termination of conductive caldera sediments less than 10 km north and south of our profile greatly depresses the observed TE apparent resistivity and vertical magnetic field relative to the model calculations for periods greater than 0.3 s for the central and eastern caldera. Analysis of the TE mode data also suggests that a similar finite‐strike effect lies in the response at periods greater than 3 s due to the mid‐crustal west moat conductor. The TM mode measurements are judged to also contain some large‐scale departure from the 2-D assumption related to horizontal current gathering from the north and south. This inflates the apparent resistivity and decreases the phase somewhat around 10 s over the central portion of the caldera relative to the 2-D model response. The regional profile of resistivity for the data at hand can be modeled with a 40 ohm‐m basal half‐space beneath 30 km of crust of 1000 ohm‐m or more. Although stations outside the caldera are very desirable to constrain this deep profile better, there is no evidence for a discrete low‐resistivity layer deep below Long Valley in contrast to our interpretation in the northeastern Basin and Range.

2021 ◽  
Vol 13 (20) ◽  
pp. 4054
Author(s):  
Fabio Pulvirenti ◽  
Francesca Silverii ◽  
Maurizio Battaglia

The Long Valley Caldera, located at the eastern edge of the Sierra Nevada range in California, has been in a state of unrest since the late 1970s. Seismic, gravity and geodetic data strongly suggest that the source of unrest is an intrusion beneath the caldera resurgent dome. However, it is not clear yet if the main contribution to the deformation comes from pulses of ascending high-pressure hydrothermal fluids or low viscosity magmatic melts. To characterize the nature of the intrusion, we developed a 3D finite element model which includes topography and crust heterogeneities. We first performed joint numerical inversions of uplift and Electronic Distance Measurement baseline length change data, collected during the period 1985–1999, to infer the deformation-source size, position, and overpressure. Successively, we used this information to refine the source overpressure estimation, compute the gravity potential and infer the intrusion density from the inversion of deformation and gravity data collected in 1982–1998. The deformation source is located beneath the resurgent dome, at a depth of 7.5 ± 0.5 km and a volume change of 0.21 ± 0.04 km3. We assumed a rhyolite compressibility of 0.026 ± 0.0011 GPa−1 (volume fraction of water between 0% and 30%) and estimated a reservoir compressibility of 0.147 ± 0.037 GPa−1. We obtained a density of 1856 ± 72 kg/m3. This density is consistent with a rhyolite melt, with 20% to 30% of dissolved hydrothermal fluids.


2019 ◽  
Vol 1 (2) ◽  
pp. 41
Author(s):  
Triana Triana ◽  
Tony Yulianto ◽  
Udi Harmoko ◽  
Iqbal Takodama

Magnetotelluric data has been carried out at the "WS" geothermal field to analyze the resistivity model resulting from 2D inversion of magnetotelluric data in TE, TM and TE-TM modes. Base on the three models produced, the mode is determined to produce the most representative model to assist in the interpretation of the "WS" geothermal system. There is a step of modes separation, namely TE (Tranverse Electric) and TM (Transverse Magnetic) modes in processing MT data. Each mode produces a 2D model with different conductivity properties. The analysis results of the three modes explain that TE mode is dominated by low resistivity with a range of values of 10-35 Ωm and medium resistivity with a value range of 35-250 Ωm and a vertical resistivity contrast. The TM mode describes the high resistivity in the Southwest and the center of the track with a value of more than 470 sehinggam resulting in lateral resistivity contrast. While the TE-TM mode produces a model that is not much different from TM mode, only the distribution of the resistivity value is a combination with TE mode. This mode describes the distribution of resistivity both vertically and laterally. Based on the analysis of the three modes, it can be concluded that the TE-TM mode is the mode that produces the most representative model. Interpretation model shows that from the TE-TM mode we have a low resistivity distribution (10-35 Ωm) represent a cap rock zone, reservoir rock with a medium resistivity distribution (35-380 Ωm), resistive zone with a high resistivity distribution (more than 380 Ωm), and the existence of the three of faults structures ro be a controller system of the "WS" geothermal.


2021 ◽  
Vol 11 (4) ◽  
pp. 1897
Author(s):  
Wei Chen ◽  
Yan Xu ◽  
Yang Gao ◽  
Lanjing Ji ◽  
Xibin Wang ◽  
...  

A broadband polarization-insensitive graphene modulator has been proposed. The dual built-in orthogonal slots waveguide allows polarization independence for the transverse electric (TE) mode and the transverse magnetic (TM) mode. Due to the introduction of metal slots in both the vertical and horizontal directions, the optical field as well as the electro-absorption of graphene are enhanced by the plasmonic effect. The proposed electro-optic modulator shows a modulation depth of 0.474 and 0.462 dB/μm for two supported modes, respectively. An ultra-low effective index difference of 0.001 can be achieved within the wavelength range from 1100 to 1900 nm. The 3 dB-bandwidth is estimated to be 101 GHz. The power consumption is 271 fJ/bit at a modulation length of 20 μm. The proposed modulator provides high speed broadband solutions in microwave photonic systems.


1991 ◽  
Vol 96 (B5) ◽  
pp. 8097 ◽  
Author(s):  
James E. Gardner ◽  
Haraldur Sigurdsson ◽  
Steven N. Carey

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. E91-E99 ◽  
Author(s):  
Enrique Gómez-Treviño ◽  
Francisco J. Esparza ◽  
Yunuhen Muñiz ◽  
Armando Calderón

We regard the amplitude of the magnetotelluric impedance of the transverse electric (TE) mode as output, rather than input, in 2D inverse algorithms. The model obtained in the inversion is in this context only an intermediate product whose TE theoretical response is for all intents and purposes the object of the inversion. The input is the amplitude of the transverse magnetic (TM) mode and the phases of both modes. They are fitted as much as possible by relaxing regularization to its limits, allowing the model to include features not strictly required by the data, but still required by the amplitude of the TE curves. We propose two tests to guaranty the accuracy and reliability of the recovery. The first is a convergence test whereby the output is monitored as a function of the roughness of the model. Second, the TM amplitude data are multiplied by different factors and the output is checked for consistency with the previous test. The resulting TE responses have only electromagnetic induction effects and thus are free from static shifts due to electric charges. We apply the procedure to the synthetic COPROD2S2 data set and compute static factors for TE and TM modes. We propose an image based on depth averages of conductivity along with a nonlinear resolution-variance analysis of the image as the final interpretation of the data. The procedure is also applied to the well-known COPROD2 field data set.


Magnetotelluric (MT) data were recorded over highly undulating terrain in Himalayan region from Roorkee to Gangotri section in period 0.001-1000 second. In the presence of topographic distortion the interpretation may become misleading. A simple scheme based on finite difference method for the simulation of the topographic distortion in magnetotelluric response is presented. The finite difference based, forward response computation algorithm, has been extended for undulating topography. The distortion coefficients, representing the topographic effect, are designed for correcting the observed distorted impedance tensor recorded in the vicinity of topographic features. The accuracy of the scheme is checked by comparing the computed responses with the finite element, Rayleigh scattering and transmission surface results for transverse electric (TE-mode) and transverse magnetic (TM-mode) responses. The modified algorithm is used to model the terrain effect on MT data recorded from Himalayan terrain.


1995 ◽  
Vol 67 (1-3) ◽  
pp. 41-60 ◽  
Author(s):  
V.S. McConnell ◽  
C.K. Shearer ◽  
J.C. Eichelberger ◽  
M.J. Keskinen ◽  
P.W. Layer ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
James Byers ◽  
Kapil Debnath ◽  
Hideo Arimoto ◽  
Muhammad K. Husain ◽  
Moïse Sotto ◽  
...  

In this paper we demonstrate that by breaking the left/right symmetry in a bi-planar double-silicon on insulator (SOI) photonic crystal (PhC) fin-waveguide, we can couple the conventionally used transverse-electric (TE) polarized mode to the transverse-magnetic (TM) polarization slot-mode. Finite difference time domain (FDTD) simulations indicate that the TE mode couples to the robust TM mode inside the Brillouin zone. Broadband transmission data shows propagation identified with horizontal-slot TM mode within the TE bandgap for fully mismatched fabricated devices. This simultaneously demonstrates TE to TM mode conversion, and the narrowest Si photonics SiO2 slot-mode propagation reported in the literature (10 nm wide slot), which both have many potential telecommunication applications.


2005 ◽  
Author(s):  
John W. Ewert ◽  
Christopher J. Harpel ◽  
Suzanna K. Brooks

Sign in / Sign up

Export Citation Format

Share Document