scholarly journals Acoustic full-waveform inversion in an elastic world

Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. R257-R271 ◽  
Author(s):  
Òscar Calderón Agudo ◽  
Nuno Vieira da Silva ◽  
Michael Warner ◽  
Joanna Morgan

Full-waveform inversion (FWI) is a technique used to obtain high-quality velocity models of the subsurface. Despite the elastic nature of the earth, the anisotropic acoustic wave equation is typically used to model wave propagation in FWI. In part, this simplification is essential for being efficient when inverting large 3D data sets, but it has the adverse effect of reducing the accuracy and resolution of the recovered P-wave velocity models, as well as a loss in potential to constrain other physical properties, such as the S-wave velocity given that amplitude information in the observed data set is not fully used. Here, we first apply conventional acoustic FWI to acoustic and elastic data generated using the same velocity model to investigate the effect of neglecting the elastic component in field data and we find that it leads to a loss in resolution and accuracy in the recovered velocity model. Then, we develop a method to mitigate elastic effects in acoustic FWI using matching filters that transform elastic data into acoustic data and find that it is applicable to marine and land data sets. Tests show that our approach is successful: The imprint of elastic effects on the recovered P-wave models is mitigated, leading to better-resolved models than those obtained after conventional acoustic FWI. Our method requires a guess of [Formula: see text] and is marginally more computationally demanding than acoustic FWI, but much less so than elastic FWI.

2019 ◽  
Vol 220 (3) ◽  
pp. 2089-2104
Author(s):  
Òscar Calderón Agudo ◽  
Nuno Vieira da Silva ◽  
George Stronge ◽  
Michael Warner

SUMMARY The potential of full-waveform inversion (FWI) to recover high-resolution velocity models of the subsurface has been demonstrated in the last decades with its application to field data. But in certain geological scenarios, conventional FWI using the acoustic wave equation fails in recovering accurate models due to the presence of strong elastic effects, as the acoustic wave equation only accounts for compressional waves. This becomes more critical when dealing with land data sets, in which elastic effects are generated at the source and recorded directly by the receivers. In marine settings, in which sources and receivers are typically within the water layer, elastic effects are weaker but can be observed most easily as double mode conversions and through their effect on P-wave amplitudes. Ignoring these elastic effects can have a detrimental impact on the accuracy of the recovered velocity models, even in marine data sets. Ideally, the elastic wave equation should be used to model wave propagation, and FWI should aim to recover anisotropic models of velocity for P waves (vp) and S waves (vs). However, routine three-dimensional elastic FWI is still commercially impractical due to the elevated computational cost of modelling elastic wave propagation in regions with low S-wave velocity near the seabed. Moreover, elastic FWI using local optimization methods suffers from cross-talk between different inverted parameters. This generally leads to incorrect estimation of subsurface models, requiring an estimate of vp/vs that is rarely known beforehand. Here we illustrate how neglecting elasticity during FWI for a marine field data set that contains especially strong elastic heterogeneities can lead to an incorrect estimation of the P-wave velocity model. We then demonstrate a practical approach to mitigate elastic effects in 3-D yielding improved estimates, consisting of using a global inversion algorithm to estimate a model of vp/vs, employing matching filters to remove elastic effects from the field data, and performing acoustic FWI of the resulting data set. The quality of the recovered models is assessed by exploring the continuity of the events in the migrated sections and the fit of the latter with the recovered velocity model.


2021 ◽  
Vol 40 (5) ◽  
pp. 324-334
Author(s):  
Rongxin Huang ◽  
Zhigang Zhang ◽  
Zedong Wu ◽  
Zhiyuan Wei ◽  
Jiawei Mei ◽  
...  

Seismic imaging using full-wavefield data that includes primary reflections, transmitted waves, and their multiples has been the holy grail for generations of geophysicists. To be able to use the full-wavefield data effectively requires a forward-modeling process to generate full-wavefield data, an inversion scheme to minimize the difference between modeled and recorded data, and, more importantly, an accurate velocity model to correctly propagate and collapse energy of different wave modes. All of these elements have been embedded in the framework of full-waveform inversion (FWI) since it was proposed three decades ago. However, for a long time, the application of FWI did not find its way into the domain of full-wavefield imaging, mostly owing to the lack of data sets with good constraints to ensure the convergence of inversion, the required compute power to handle large data sets and extend the inversion frequency to the bandwidth needed for imaging, and, most significantly, stable FWI algorithms that could work with different data types in different geologic settings. Recently, with the advancement of high-performance computing and progress in FWI algorithms at tackling issues such as cycle skipping and amplitude mismatch, FWI has found success using different data types in a variety of geologic settings, providing some of the most accurate velocity models for generating significantly improved migration images. Here, we take a step further to modify the FWI workflow to output the subsurface image or reflectivity directly, potentially eliminating the need to go through the time-consuming conventional seismic imaging process that involves preprocessing, velocity model building, and migration. Compared with a conventional migration image, the reflectivity image directly output from FWI often provides additional structural information with better illumination and higher signal-to-noise ratio naturally as a result of many iterations of least-squares fitting of the full-wavefield data.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. R271-R293 ◽  
Author(s):  
Nuno V. da Silva ◽  
Gang Yao ◽  
Michael Warner

Full-waveform inversion deals with estimating physical properties of the earth’s subsurface by matching simulated to recorded seismic data. Intrinsic attenuation in the medium leads to the dispersion of propagating waves and the absorption of energy — media with this type of rheology are not perfectly elastic. Accounting for that effect is necessary to simulate wave propagation in realistic geologic media, leading to the need to estimate intrinsic attenuation from the seismic data. That increases the complexity of the constitutive laws leading to additional issues related to the ill-posed nature of the inverse problem. In particular, the joint estimation of several physical properties increases the null space of the parameter space, leading to a larger domain of ambiguity and increasing the number of different models that can equally well explain the data. We have evaluated a method for the joint inversion of velocity and intrinsic attenuation using semiglobal inversion; this combines quantum particle-swarm optimization for the estimation of the intrinsic attenuation with nested gradient-descent iterations for the estimation of the P-wave velocity. This approach takes advantage of the fact that some physical properties, and in particular the intrinsic attenuation, can be represented using a reduced basis, substantially decreasing the dimension of the search space. We determine the feasibility of the method and its robustness to ambiguity with 2D synthetic examples. The 3D inversion of a field data set for a geologic medium with transversely isotropic anisotropy in velocity indicates the feasibility of the method for inverting large-scale real seismic data and improving the data fitting. The principal benefits of the semiglobal multiparameter inversion are the recovery of the intrinsic attenuation from the data and the recovery of the true undispersed infinite-frequency P-wave velocity, while mitigating ambiguity between the estimated parameters.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. R173-R184 ◽  
Author(s):  
Angelo Sajeva ◽  
Mattia Aleardi ◽  
Eusebio Stucchi ◽  
Nicola Bienati ◽  
Alfredo Mazzotti

We have developed a stochastic full-waveform inversion that uses genetic algorithms (GA FWI) to estimate acoustic macro models of the P-wave velocity field. Stochastic methods such as GA severely suffer the curse of dimensionality, meaning that they require unaffordable computer resources for inverse problems with many unknowns and expensive forward modeling. To mitigate this issue, we have proposed a two-grid technique with a coarse grid to represent the subsurface for the GA inversion and a finer grid for the forward modeling. We have applied this procedure to invert synthetic acoustic data of the Marmousi model, and we have developed three different tests. The first two tests use a velocity model derived from standard stacking velocity analysis as prior information and differ only for the parameterization of the coarse grid. Their comparison indicates that a smart parameterization of the coarse grid may significantly improve the final result. The third test uses a linearly increasing 1D velocity model as prior information, a layer-stripping procedure, and a large number of model evaluations. All three tests return velocity models that fairly reproduce the long-wavelength structures of the Marmousi. First-break cycle skipping related to the seismograms of the final GA-FWI models is significantly reduced compared with that computed on the models used as prior information. Descent-based FWIs starting from final GA-FWI models yield velocity models with low and comparable model misfits and with an improved reconstruction of the structural details. The quality of the models obtained by GA FWI plus descent-based FWI is benchmarked against the models obtained by descent-based FWI started from a smoothed version of the Marmousi and started directly from the prior information models. Our results are promising and demonstrate the ability of the two-grid GA FWI to yield velocity models suitable as input to descent-based FWI.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. R611-R628 ◽  
Author(s):  
Òscar Calderón Agudo ◽  
Nuno Vieira da Silva ◽  
Michael Warner ◽  
Tatiana Kalinicheva ◽  
Joanna Morgan

In conventional full-waveform inversion (FWI), viscous effects are typically neglected, and this is likely to adversely affect the recovery of P-wave velocity. We have developed a strategy to mitigate viscous effects based on the use of matching filters with the aim of improving the performance of acoustic FWI. The approach requires an approximate estimate of the intrinsic attenuation model, and it is one to three times more expensive than conventional acoustic FWI. First, we perform 2D synthetic tests to study the impact of viscoacoustic effects on the recorded wavefield and analyze how that affects the recovered velocity models after acoustic FWI. Then, we apply the current method on the generated data and determine that it mitigates viscous effects successfully even in the presence of noise. We find that having an approximate estimate for intrinsic attenuation, even when these effects are strong, leads to improvements in resolution and a more accurate recovery of the P-wave velocity. Then, we implement and develop our method on a 2D field data set using Gabor transforms to obtain an approximate intrinsic attenuation model and inversion frequencies of up to 24 Hz. The analysis of the results indicates that there is an improvement in terms of resolution and continuity of the layers on the recovered P-wave velocity model, leading to an improved flattening of gathers and a closer match of the inverted velocity model with the migrated seismic data.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R1-R10 ◽  
Author(s):  
Zhendong Zhang ◽  
Tariq Alkhalifah ◽  
Zedong Wu ◽  
Yike Liu ◽  
Bin He ◽  
...  

Full-waveform inversion (FWI) is an attractive technique due to its ability to build high-resolution velocity models. Conventional amplitude-matching FWI approaches remain challenging because the simplified computational physics used does not fully represent all wave phenomena in the earth. Because the earth is attenuating, a sample-by-sample fitting of the amplitude may not be feasible in practice. We have developed a normalized nonzero-lag crosscorrelataion-based elastic FWI algorithm to maximize the similarity of the calculated and observed data. We use the first-order elastic-wave equation to simulate the propagation of seismic waves in the earth. Our proposed objective function emphasizes the matching of the phases of the events in the calculated and observed data, and thus, it is more immune to inaccuracies in the initial model and the difference between the true and modeled physics. The normalization term can compensate the energy loss in the far offsets because of geometric spreading and avoid a bias in estimation toward extreme values in the observed data. We develop a polynomial-type weighting function and evaluate an approach to determine the optimal time lag. We use a synthetic elastic Marmousi model and the BigSky field data set to verify the effectiveness of the proposed method. To suppress the short-wavelength artifacts in the estimated S-wave velocity and noise in the field data, we apply a Laplacian regularization and a total variation constraint on the synthetic and field data examples, respectively.


2019 ◽  
Author(s):  
Clàudia Gras ◽  
Valentí Sallarès ◽  
Daniel Dagnino ◽  
C. Estela Jiménez ◽  
Adrià Meléndez ◽  
...  

Abstract. We present a high-resolution P-wave velocity model of the sedimentary cover and the uppermost basement until ~ 3 km depth obtained by full-waveform inversion of multichannel seismic data acquired with a 6 km-long streamer in the Alboran Sea (SE Iberia). The inherent non-linearity of the method, especially for short-offset, band-limited seismic data as this one, is circumvented by applying a data processing/modeling sequence consisting of three steps: (1) data re-datuming by back-propagation of the recorded seismograms to the seafloor; (2) joint refraction and reflection travel-time tomography combining the original and the re-datumed shot gathers; and (3) FWI of the original shot gathers using the model obtained by travel-time tomography as initial reference. The final velocity model shows a number of geological structures that cannot be identified in the travel-time tomography models or easily interpreted from seismic reflection images alone. A sharp strong velocity contrast accurately defines the geometry of the top of the basement. Several low-velocity zones that may correspond to the abrupt velocity change across steeply dipping normal faults are observed at the flanks of the basin. A 200–300 m thick, high-velocity layer embedded within lower velocity sediment may correspond to evaporites deposited during the Messinian crisis. The results confirm that the combination of data re-datuming and joint refraction and reflection travel-time inversion provides reference models that are accurate enough to apply full-waveform inversion to relatively short offset streamer data in deep water settings starting at field-data standard low frequency content of 6 Hz.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R411-R427 ◽  
Author(s):  
Gang Yao ◽  
Nuno V. da Silva ◽  
Michael Warner ◽  
Di Wu ◽  
Chenhao Yang

Full-waveform inversion (FWI) is a promising technique for recovering the earth models for exploration geophysics and global seismology. FWI is generally formulated as the minimization of an objective function, defined as the L2-norm of the data residuals. The nonconvex nature of this objective function is one of the main obstacles for the successful application of FWI. A key manifestation of this nonconvexity is cycle skipping, which happens if the predicted data are more than half a cycle away from the recorded data. We have developed the concept of intermediate data for tackling cycle skipping. This intermediate data set is created to sit between predicted and recorded data, and it is less than half a cycle away from the predicted data. Inverting the intermediate data rather than the cycle-skipped recorded data can then circumvent cycle skipping. We applied this concept to invert cycle-skipped first arrivals. First, we picked up the first breaks of the predicted data and the recorded data. Second, we linearly scaled down the time difference between the two first breaks of each shot into a series of time shifts, the maximum of which was less than half a cycle, for each trace in this shot. Third, we moved the predicted data with the corresponding time shifts to create the intermediate data. Finally, we inverted the intermediate data rather than the recorded data. Because the intermediate data are not cycle-skipped and contain the traveltime information of the recorded data, FWI with intermediate data updates the background velocity model in the correct direction. Thus, it produces a background velocity model accurate enough for carrying out conventional FWI to rebuild the intermediate- and short-wavelength components of the velocity model. Our numerical examples using synthetic data validate the intermediate-data concept for tackling cycle skipping and demonstrate its effectiveness for the application to first arrivals.


Sign in / Sign up

Export Citation Format

Share Document