Manual seismic reflection tomography

Geophysics ◽  
1999 ◽  
Vol 64 (5) ◽  
pp. 1546-1552 ◽  
Author(s):  
Gary E. Murphy ◽  
Samuel H. Gray

Prestack depth migration needs a good velocity model to produce a good image; in fact, finding the velocity model is one of the goals of prestack depth migration. Migration velocity analysis uses information produced by the migration to update the current velocity model for use in the next migration iteration. Several techniques are currently used to estimate migration velocities, ranging from trial and error to automatic methods like reflection tomography. Here, we present a method that combines aspects of some of the more accurate methods into an interactive procedure for viewing the effects of residual normal moveout corrections on migrated common reflection point (CRP) gathers. The residual corrections are performed by computing traveltimes along raypaths through both the current velocity model and the velocity model plus suggested model perturbations. The differences between those sets of traveltimes are related to differences in depth, allowing the user to preview the approximate effects of a velocity change on the CRP gathers without remigrating the data. As with automatic tomography, the computed depth differences are essentially backprojected along raypaths through the model, yielding a velocity update that flattens the gathers. Unlike automatic tomography, in which an algebraic inverse problem is solved by the computer for all geologic layers simultaneously, our method estimates shallow velocities before proceeding deeper and requires substantial user intervention, both in flattening individual CRP gathers and in deciding the appropriateness of the suggested velocity updates in individual geologic units.

Geophysics ◽  
2004 ◽  
Vol 69 (2) ◽  
pp. 533-546 ◽  
Author(s):  
Robert G. Clapp ◽  
Biondo L. Biondi ◽  
Jon F. Claerbout

In areas of complex geology, prestack depth migration is often necessary if we are to produce an accurate image of the subsurface. Prestack depth migration requires an accurate interval velocity model. With few exceptions, the subsurface velocities are not known beforehand and should be estimated. When the velocity structure is complex, with significant lateral variations, reflection‐tomography methods are often an effective tool for improving the velocity estimate. Unfortunately, reflection tomography often converges slowly, to a model that is geologically unreasonable, or it does not converge at all. The large null space of reflection‐tomography problems often forces us to add a sparse parameterization of the model and/or regularization criteria to the estimation. Standard tomography schemes tend to create isotropic features in velocity models that are inconsistent with geology. These isotropic features result, in large part, from using symmetric regularization operators or from choosing a poor model parameterization. If we replace the symmetric operators with nonstationary operators that tend to spread information along structural dips, the tomography will produce velocity models that are geologically more reasonable. In addition, by forming the operators in helical 1D space and performing polynomial division, we apply the inverse of these space‐varying anisotropic operators. The inverse operators can be used as a preconditioner to a standard tomography problem, thereby significantly improving the speed of convergence compared with the typical regularized inversion problem. Results from 2D synthetic and 2D field data are shown. In each case, the velocity obtained improves the focusing of the migrated image.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. S185-S197 ◽  
Author(s):  
Bertrand Duquet ◽  
Patrick Lailly

Full-volume seismic imaging is essential for a sound interpretation of structurally complex geologies. Prestack depth imaging is the most appropriate tool for such imaging, but it requires a precise and often complex velocity model. In such situations, 3D Kirchhoff prestack depth migration can be quite expensive. On the other hand, a wavefield approach, although generally tremendously expensive, is not affected by the complexity of the velocity model. We propose an affordable 3-D wavefield prestack depth-migration technique. It is designed for marine surveys for which the source-receiver azimuth is approximately constant. The technique applies a plane-wave migration algorithm to time-shifted data — quite a surprising approach when we realize that marine surveys do not allow the synthesis of genuine plane-wave data. Additionally, the imaging principle has to be modified to give results consistent with shot-record migration. Our technique also produces image gathers that allow an update of the velocity model by means of migration velocity analysis. Results from synthetics and conventional marine data demonstrate the effectiveness of the method.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. S161-S167 ◽  
Author(s):  
Weihong Fei ◽  
George A. McMechan

Three-dimensional prestack depth migration and depth residual picking in common-image gathers (CIGs) are the most time-consuming parts of 3D migration velocity analysis. Most migration-based velocity analysis algorithms need spatial coordinates of reflection points and CIG depth residuals at different offsets (or angles) to provide updated velocity information. We propose a new algorithm that can analyze 3D velocity quickly and accurately. Spatial coordinates and orientations of reflection points are provided by a 3D prestack parsimonious depth migration; the migration involves only the time samples picked from the salient reflection events on one 3D common-offset volume. Ray tracing from the reflection points to the surface provides a common-reflection-point (CRP) gather for each reflection point. Predicted (nonhyperbolic) moveouts for local velocity perturbations, based on maximizing the stacked amplitude, give the estimated velocity updates for each CRP gather. Then the velocity update for each voxel in the velocity model is obtained by averaging over all predicted velocity updates for that voxel. Prior model constraints may be used to stabilize velocity updating. Compared with other migration velocity analyses, the traveltime picking is limited to only one common-offset volume (and needs to be done only once); there is no need for intensive 3D prestack depth migration. Hence, the computation time is orders of magnitude less than other migration-based velocity analyses. A 3D synthetic data test shows the algorithm works effectively and efficiently.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


1996 ◽  
Vol 15 (6) ◽  
pp. 751-753 ◽  
Author(s):  
Y. C. Kim ◽  
C. M. Samuelsen ◽  
T. A. Hauge

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 1053-1070 ◽  
Author(s):  
Einar Iversen

The isochron, the name given to a surface of equal two‐way time, has a profound position in seismic imaging. In this paper, I introduce a framework for construction of isochrons for a given velocity model. The basic idea is to let trajectories called isochron rays be associated with iso chrons in an way analogous to the association of conventional rays with wavefronts. In the context of prestack depth migration, an isochron ray based on conventional ray theory represents a simultaneous downward continuation from both source and receiver. The isochron ray is a generalization of the normal ray for poststack map migration. I have organized the process with systems of ordinary differential equations appearing on two levels. The upper level is model‐independent, and the lower level consists of conventional one‐way ray tracing. An advantage of the new method is that interpolation in a ray domain using isochron rays is able to treat triplications (multiarrivals) accurately, as opposed to interpolation in the depth domain based on one‐way traveltime tables. Another nice property is that the Beylkin determinant, an important correction factor in amplitude‐preserving seismic imaging, is closely related to the geometric spreading of isochron rays. For these reasons, the isochron ray has the potential to become a core part of future implementations of prestack depth migration. In addition, isochron rays can be applied in many contexts of forward and inverse seismic modeling, e.g., generation of Fresnel volumes, map migration of prestack traveltime events, and generation of a depth‐domain–based cost function for velocity model updating.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 392-398 ◽  
Author(s):  
W.-J. Wu ◽  
L. Lines ◽  
A. Burton ◽  
H.-X. Lu ◽  
J. Zhu ◽  
...  

We produce depth images for an Alberta Foothills line by iteratively using a number of migration and velocity analysis techniques. In imaging steeply dipping layers of a foothills data set, it is apparent that thrust belt geology can violate the conventional assumptions of elevation datum corrections and common midpoint (CMP) stacking. To circumvent these problems, we use migration from topography in which we perform prestack depth migration on the data using correct source and receiver elevations. Migration from topography produces enhanced images of steep shallow reflectors when compared to conventional processing. In addition to migration from topography, we couple prestack depth migration with the continuous adjustment of velocity depth models. A number of criteria are used in doing this. These criteria require that our velocity estimates produce a focused image and that migrated depths in common image gathers be independent of source‐receiver offset. Velocity models are estimated by a series of iterative and interpretive steps involving prestack migration velocity analysis and structural interpretation. Overlays of velocity models on depth migrations should generally show consistency between velocity boundaries and reflection depths. Our preferred seismic depth section has been produced by using prestack reverse‐time depth migration coupled with careful geological interpretation.


Sign in / Sign up

Export Citation Format

Share Document