The measurement of weak anisotropy with the generalized reciprocal method

Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1583-1591 ◽  
Author(s):  
Derecke Palmer

Anisotropy parameters can be determined from seismic refraction data using the generalized reciprocal method (GRM) for a layer in which the velocity can be described with the Crampin approximation for transverse isotropy. The parameters are the standard anisotropy factor, which is the horizontal velocity divided by the vertical velocity, and a second poorly determined parameter which, for weak anisotropy, is approximated by a linear relationship with the anisotropy factor. Although only one anisotropy parameter is effectively determined, the second parameter is essential to ensure that the anisotropy does not degenerate to the elliptical condition which is indeterminate using the approach described in this paper. The anisotropy factor is taken as the value for which the phase velocity at the critical angle given by the Crampin equation is equal to the average velocity computed with the optimum XY value obtained from a GRM analysis of the refraction data. The anisotropy parameters can be used to improve the estimate of the refractor velocity, which can exhibit marked dip effects when the overlying layer is anisotropic. In a model study, depths computed with the phase velocity at the critical angle are within 3% of the true values, whereas those calculated with the horizontal phase velocity (which assumes isotropy) are greater than the true depths by about 25%. Anisotropy illustrates the pitfalls of model‐based inversion strategies, which seek agreement between the travetime data and the computed response of the model. With anisotropic layers, the traveltime data provide the seismic velocity in the overlying layer in the horizontal direction, whereas the seismic velocity near the critical angle is required for depth computations. If anisotropy is applicable, then the GRM using the methods described in this paper is able to provide a good starting model for other approaches, such as refraction tomography.

2021 ◽  
Vol 873 (1) ◽  
pp. 012038
Author(s):  
Madaniya Oktariena ◽  
Wahyu Triyoso ◽  
Dona Sita Ambarsari ◽  
Sigit Sukmono ◽  
Erlangga Septama ◽  
...  

Abstract The seismic far-offset data plays important role in seismic subsurface imaging and reservoir parameters derivation, however, it is often distorted by the hockey stick effect due to improper correction of the Vertical Transverse Isotropy (VTI) during the seismic velocity analysis. The anisotropy parameter η is needed to properly correct the VTI effect. The anisotropy parameters of ε and δ obtained from log and core measurements, can be used to estimate the η values, however, the upscaling effects due to the different frequencies of the wave sources used in the measurements must be carefully taken into account. The objective is to get better understanding on the proper uses of anisotropy parameters in the the velocity analysis of deepwater seismic gather data. To achieve the objective, the anisotropy parameters from ultrasonic core measurements and dipole sonic log were used to model the seismic CDP gathers. The upscaling effects is reflected by the big difference of measured anisotropy values, in which the core measurement value is about 40 times higher than the log measurement value. The CDP gathers modelling results show that, due to the upscaling effect, the log and core-based models show significant differences of far-offset amplitude and hockey sticks responses. The differences can be minimized by scaling-down the log anisotropy values to core anisotropy values by using equations established from core – log anisotropy values cross-plot. The study emphasizes the importances of integrating anisotropy parameters from core and log data to minimize the upscaling effect to get the best η for the VTI correction in seismic velocity analysis.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. A53-A57 ◽  
Author(s):  
Samik Sil ◽  
Mrinal K. Sen

Seismic critical-angle reflectometry is a relatively new field for estimating seismic anisotropy parameters. The theory relates changes in the critical angle with azimuth of the seismic line to the principal axis and anisotropy parameters. Current implementation of the critical-angle reflectometry process has certain shortcomings in that the critical angle is determined from critical offset and the process is vulnerable to different approximation errors. Seismic critical-angle analysis in the plane-wave [Formula: see text] domain can handle these issues and has the potential to become an independent tool for estimating anisotropy parameters. The theory of seismic critical-angle reflectometry is modified to make it suitable for [Formula: see text] domain analysis. Then using full-wave synthetic seismograms at three different azimuths for a transversely isotropic medium with a horizontal axis of symmetry (HTI), the effectiveness of anisotropy parameter estimation is demonstrated.


2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


2001 ◽  
Vol 34 (4) ◽  
pp. 1309
Author(s):  
Τ. ΠΑΠΑΔΟΠΟΥΛΟΣ ◽  
Π. ΚΑΜΠΟΥΡΗΣ ◽  
Ι. ΑΛΕΞΟΠΟΥΛΟΣ

A comparative study of conventional and modern processing techniques of seismic refraction data is examined in this paper, for shallow structure investigation in the framework of a geotechnical research. The techniques used here were applied for the detection of narrow and low seismic velocity zones along the bedrock in the 10.5th Km of the new national road Igoumenitsa-Ioannina. The results were comparable and only slight deviations were observed due mainly to different algorithm procedures applied on data and the resolution provided by each technique. It is pointed out that the non linear tomography seismic refraction technique, overcomes the conventional ones since by increasing the number of seismic sources and considering the gradual variation of seismic velocity with depth, a better resolution and image reconstruction for the subsurface structure is obtained.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. MR195-MR203
Author(s):  
Fuyong Yan ◽  
Lev Vernik ◽  
De-Hua Han

Studying the empirical relations between seismic anisotropy parameters is important for the simplification and practical applications of seismic anisotropy. The elastic properties of mudrocks are often described by transverse isotropy. Knowing the elastic properties in the vertical and horizontal directions, a sole oblique anisotropy parameter determines the pattern of variation of the elastic properties of a transversely isotropic (TI) medium in all of the other directions. The oblique seismic anisotropy parameter [Formula: see text], which determines seismic reflection moveout behavior, is important in anisotropic seismic data processing and interpretation. Compared to the other anisotropy parameters, the oblique anisotropy parameter is more sensitive to the measurement error. Although, theoretically, only one oblique velocity is needed to determine the oblique anisotropy parameter, the uncertainty can be greatly reduced if multiple oblique velocities in different directions are measured. If a mudrock is not a perfect TI medium but it is expediently treated as one, then multiple oblique velocity measurements in different directions should lead to a more representative approximation of [Formula: see text] or [Formula: see text] because the directional bias can be reduced. Based on a data quality analysis of the laboratory seismic anisotropy measurement data from the literature, we found that there are strong correlations between the oblique anisotropy parameter and the principal anisotropy parameters when data points of more uncertainty are excluded. Examples of potential applications of these empirical relations are discussed.


Geophysics ◽  
1981 ◽  
Vol 46 (11) ◽  
pp. 1508-1518 ◽  
Author(s):  
Derecke Palmer

The generalized reciprocal method (GRM) is a technique for delineating undulating refractors at any depth from in‐line seismic refraction data consisting of forward and reverse traveltimes. The traveltimes at two geophones, separated by a variable distance XY, are used in refractor velocity analysis and time‐depth calculations. At the optimum XY spacing, the upward traveling segments of the rays to each geophone emerge from near the same point on the refractor. This results in the refractor velocity analysis being the simplest and the time‐depths showing the most detail. In contrast, the conventional reciprocal method which has XY equal to zero is especially prone to produce numerous fictitious refractor velocity changes, as well as producing gross smoothing of irregular refractor topography. The depth conversion factor is relatively insensitive to dip angles up to about 20 degrees, because both forward and reverse data are used. As a result, depth calculations to an undulating refractor are particularly convenient even when the overlying strata have velocity gradients. The GRM provides a means of recognizing and accommodating undetected layers, provided an optimum XY value can be recovered from the traveltime data, the refractor velocity analysis, and/or the time‐depths. The presence of undetected layers can be inferred when the observed optimum XY value differs from the XY value calculated from the computed depth section. The undetected layers can be accommodated by using an average velocity based on the optimum XY value. This average velocity permits accurate depth calculations with commonly encountered velocity contrasts.


Sign in / Sign up

Export Citation Format

Share Document