scholarly journals Physical and numerical modeling of tuning and diffraction in azimuthally anisotropic media

Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1613-1621 ◽  
Author(s):  
Richard L. Gibson ◽  
Stephen Theophanis ◽  
M. Nafi Toksöz

Fractured reservoirs are an important target for exploration and production geophysics, and the azimuthal anisotropy often associated with these reservoirs can strongly influence seismic wave propagation. We created a physical model of a fractured reservoir to simulate some of these propagation effects. The reservoir is represented by a phenolite disk that is thin with respect to the elastic wavelengths in the experiment, creating model dimensions that are representative of realistic reservoirs. Phenolite is strongly anisotropic with orthorhombic symmetry, which suggests that azimuthal amplitude versus offset (AVO) effects should be obvious in data. We acquired both SH- and P-wave data in common‐offset gathers with a near offset and a far offset and found that although the SH-wave data show clear azimuthal variations in AVO, the P-wave signals show no apparent changes with azimuth. We then applied numerical modeling to analyze the data. Because ray methods cannot model diffractions from the disk edge, we first used a ray‐Born technique to simulate variations in waveforms associated with such scattering. The synthetic seismograms reproduced variations in the SH-wave waveforms accurately, though the amplitude contrast between acquisition azimuths was overestimated. Assuming a laterally homogeneous model, we then applied ray methods to simulate tuning effects in SH- and P-wave data and confirmed that in spite of the large contrasts in elastic properties, the tuning of the P-wave reflections from the thin disk changed so there was negligible contrast in AVO with azimuth. Models of field scale reservoirs showed that the same effects could be expected for field applications.

Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1172-1180 ◽  
Author(s):  
W. Scott Leaney ◽  
Colin M. Sayers ◽  
Douglas E. Miller

Multioffset vertical seismic profile (VSP) experiments, commonly referred to as walkaways, enable anisotropy to be measured reliably in the field. The results can be fed into modeling programs to study the impact of anisotropy on velocity analysis, migration, and amplitude versus offset (AVO). Properly designed multioffset VSPs can also provide the target AVO response measured under optimum conditions, since the wavelet is recorded just above the reflectors of interest with minimal reflection point dispersal. In this paper, the multioffset VSP technique is extended to include multioffset azimuths, and a multiazimuthal multiple VSP data set acquired over a carbonate reservoir is analyzed for P-wave anisotropy and AVO. Direct arrival times down to the overlying shale and reflection times and amplitudes from the carbonate are analyzed. Data analysis involves a three‐term fit to account for nonhyperbolic moveout, dip, and azimuthal anisotropy. Results indicate that the overlying shale is transversely isotropic with a vertical axis of symmetry (VTI), while the carbonate shows 4–5% azimuthal anisotropy in traveltimes. The fast direction is consistent with the maximum horizontal stress orientation determined from break‐out logs and is also consistent with the strike of major faults. AVO analysis of the reflection from the top of the carbonate layer shows a critical angle reduction in the fast direction and maximum gradient in the slow direction. This agrees with modeling and indicates a greater amplitude sensitivity in the slow direction—the direction perpendicular to fracture strike. In principle, 3-D surveys should have wide azimuthal coverage to characterize fractured reservoirs. If this is not possible, it is important to have azimuthal line coverage in the minimum horizontal stress direction to optimize the use of AVO for fractured reservoir characterization. This direction can be obtained from multiazimuthal walkaways using the azimuthal P-wave analysis techniques presented.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. D161-D170 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin

Compensation for geometrical spreading along a raypath is one of the key steps in AVO (amplitude-variation-with-offset) analysis, in particular, for wide-azimuth surveys. Here, we propose an efficient methodology to correct long-spread, wide-azimuth reflection data for geometrical spreading in stratified azimuthally anisotropic media. The P-wave geometrical-spreading factor is expressed through the reflection traveltime described by a nonhyperbolic moveout equation that has the same form as in VTI (transversely isotropic with a vertical symmetry axis) media. The adapted VTI equation is parameterized by the normal-moveout (NMO) ellipse and the azimuthally varying anellipticity parameter [Formula: see text]. To estimate the moveout parameters, we apply a 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin that operates simultaneously with traces at all offsets andazimuths. The estimated moveout parameters are used as the input in our geometrical-spreading computation. Numerical tests for models composed of orthorhombic layers with strong, depth-varying velocity anisotropy confirm the high accuracy of our travetime-fitting procedure and, therefore, of the geometrical-spreading correction. Because our algorithm is based entirely on the kinematics of reflection arrivals, it can be incorporated readily into the processing flow of azimuthal AVO analysis. In combination with the nonhyperbolic moveout inversion, we apply our method to wide-azimuth P-wave data collected at the Weyburn field in Canada. The geometrical-spreading factor for the reflection from the top of the fractured reservoir is clearly influenced by azimuthal anisotropy in the overburden, which should cause distortions in the azimuthal AVO attributes. This case study confirms that the azimuthal variation of the geometrical-spreading factor often is comparable to or exceeds that of the reflection coefficient.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 699-707 ◽  
Author(s):  
Andrés Pech ◽  
Ilya Tsvankin

Interpretation and inversion of azimuthally varying nonhyperbolic reflection moveout requires accounting for both velocity anisotropy and subsurface structure. Here, our previously derived exact expression for the quartic moveout coefficient A4 is applied to P‐wave reflections from a dipping interface overlaid by a medium of orthorhombic symmetry. The weak‐anisotropy approximaton for the coefficient A4 in a homogeneous orthorhombic layer is controlled by the anellipticity parameters η(1), η(2), and η(3), which are responsible for time processing of P‐wave data. If the dip plane of the reflector coincides with the vertical symmetry plane [x1, x3], A4 on the dip line is proportional to the in‐plane anellipticity parameter η(2) and always changes sign for a dip of 30○. The quartic coefficient on the strike line is a function of all three η–parameters, but for mild dips it is mostly governed by η(1)—the parameter defined in the incidence plane [x2, x3]. Whereas the magnitude of the dip line A4 typically becomes small for dips exceeding 45○, the nonhyperbolic moveout on the strike line may remain significant even for subvertical reflectors. The character of the azimuthal variation of A4 depends on reflector dip and is quite sensitive to the signs and relative magnitudes of η(1), η(2), and η(3). The analytic results and numerical modeling show that the azimuthal pattern of the quartic coefficient can contain multiple lobes, with one or two azimuths of vanishing A4 between the dip and strike directions. The strong influence of the anellipticity parameters on the azimuthally varying coefficient A4 suggests that nonhyperbolic moveout recorded in wide‐azimuth surveys can help to constrain the anisotropic velocity field. Since for typical orthorhombic models that describe naturally fractured reservoirs the parameters η(1,2,3) are closely related to the fracture density and infill, the results of azimuthal nonhyperbolic moveout analysis can also be used in reservoir characterization.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 692-706 ◽  
Author(s):  
Subhashis Mallick ◽  
Kenneth L. Craft ◽  
Laurent J. Meister ◽  
Ronald E. Chambers

In an azimuthally anisotropic medium, the principal directions of azimuthal anisotropy are the directions along which the quasi-P- and the quasi-S-waves propagate as pure P and S modes. When azimuthal anisotropy is induced by oriented vertical fractures imposed on an azimuthally isotropic background, two of these principal directions correspond to the directions parallel and perpendicular to the fractures. S-waves propagating through an azimuthally anisotropic medium are sensitive to the direction of their propagation with respect to the principal directions. As a result, primary or mode‐converted multicomponent S-wave data are used to obtain the principal directions. Apart from high acquisition cost, processing and interpretation of multicomponent data require a technology that the seismic industry has not fully developed. Anisotropy detection from conventional P-wave data, on the other hand, has been limited to a few qualitative studies of the amplitude variation with offset (AVO) for different azimuthal directions. To quantify the azimuthal AVO, we studied the amplitude variation with azimuth for P-wave data at fixed offsets. Our results show that such amplitude variation with azimuth is periodic in 2θ, θ being the orientation of the shooting direction with respect to one of the principal directions. For fracture‐induced anisotropy, this principal direction corresponds to the direction parallel or perpendicular to the fractures. We use this periodic azimuthal dependence of P-wave reflection amplitudes to identify two distinct cases of anisotropy detection. The first case is an exactly determined one, where we have observations from three azimuthal lines for every common‐midpoint (CMP) location. We derive equations to compute the orientation of the principal directions for such a case. The second case is an overdetermined one where we have observations from more than three azimuthal lines. Orientation of the principal direction from such an overdetermined case can be obtained from a least‐squares fit to the reflection amplitudes over all the azimuthal directions or by solving many exactly determined problems. In addition to the orientation angle, a qualitative measure of the degree of azimuthal anisotropy can also be obtained from either of the above two cases. When azimuthal anisotropy is induced by oriented vertical fractures, this qualitative measure of anisotropy is proportional to fracture density. Using synthetic seismograms, we demonstrate the robustness of our method in evaluating the principal directions from conventional P-wave seismic data. We also apply our technique to real P-wave data, collected over a wide source‐to‐receiver azimuth distribution. Computations using our method gave an orientation of the principal direction consistent with the general fracture orientation in the area as inferred from other geological and geophysical evidence.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. D41-D50 ◽  
Author(s):  
Martin Landrø ◽  
Ilya Tsvankin

Existing anisotropic parameter-estimation algorithms that operate with long-offset data are based on the inversion of either nonhyperbolic moveout or wide-angle amplitude-variation-with-offset (AVO) response. We show that valuable information about anisotropic reservoirs can also be obtained from the critical angle of reflected waves. To explain the behavior of the critical angle, we develop weak-anisotropy approximations for vertical transverse isotropy and then use Tsvankin’s notation to extend them to azimuthally anisotropic models of orthorhombic symmetry. The P-wave critical-angle reflection in orthorhombic media is particularly sensitive to the parameters [Formula: see text] and [Formula: see text] responsible for the symmetry-plane horizontal velocity in the high-velocity layer. The azimuthal variation of the critical angle for typical orthorhombic models can reach [Formula: see text], which translates into substantial changes in the critical offset of the reflected P-wave. The main diagnostic features of the critical-angle reflection employed in our method include the rapid amplitude increase at the critical angle and the subsequent separation of the head wave. Analysis of exact synthetic seismograms, generated with the reflectivity method, confirms that the azimuthal variation of the critical offset is detectable on wide-azimuth, long-spread data and can be qualitatively described by our linearized equations. Estimation of the critical offset from the amplitude curve of the reflected wave, however, is not straightforward. Additional complications may be caused by the overburden noise train and by the influence of errors in the overburden velocity model on the computation of the critical angle. Still, critical-angle reflectometry should help to constrain the dominant fracture directions and can be combined with other methods to reduce the uncertainty in the estimated anisotropy parameters.


Geophysics ◽  
2021 ◽  
pp. 1-93
Author(s):  
Vladimir Leviant ◽  
Naum Marmalevsky ◽  
Igor Kvasov ◽  
Polina Stognii ◽  
Igor Petrov

One of the most urgent problems of oil and gas reservoir monitoring is the assessment of fractured reservoir infill type – with fluid-filled, gas-filled or closed (no-reservoir situation) fractures, which is of significant value for time-lapse seismic technology. We used the grid-characteristic method (GCM) for numerical modeling of seismic responses from fractured periodic elasto-acoustic structures. We consider every single fracture individually (without using the effective medium approach), and set explicit boundary conditions on fracture surfaces. We assume realistic height-to-thickness ratios – fracture opening (aperture) – equaling 3 to 5 orders of magnitude. These techniques make our models as close to real fractured reservoirs as possible. Analyzing the simulated seismic responses, we solve the problem of assessing fractured reservoir infill type. As a result, previously unknown properties of seismic responses from fractured reservoirs were revealed. We use AVO as the main tool for the analysis of fracture infill type effect on the seismic response in three frequency ranges. Three out of four models exhibit a stable positive AVO gradient regardless of the rock type and frequency range. The analysis of linearized Zoeppritz equations confirms such AVO behavior. We proposed quantitative criteria (indicators) for recognition of a fracture infill type. Amplitude-frequency analysis is shown to expand the capabilities of infill type recognition. Thus, a method for determining fractured reservoir infill type is established for carbonate and shale formations, which could become the basis for a new direction in time-lapse technology.


Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 711-726 ◽  
Author(s):  
Feng Shen ◽  
Xiang Zhu ◽  
M. Nafi Toksöz

This paper attempts to explain the relationships between fractured medium properties and seismic signatures and distortions induced by geology‐related influences on azimuthal AVO responses. In the presence of vertically aligned fractures, the relationships between fracture parameters (fracture density, fracture aspect ratio, and saturated fluid content) and their seismic signatures are linked with rock physics models of fractured media. The P‐wave seismic signatures studied in this paper include anisotropic parameters (δ(v), (v), and γ(v)), NMO velocities, and azimuthal AVO responses, where δ(v) is responsible for near‐vertical P‐wave velocity variations, (v) defines P‐wave anisotropy, and γ(v) governs the degree of shearwave splitting. The results show that in gas‐saturated fractures, anisotropic parameters δ(v) and (v) vary with fracture density alone. However, in water‐saturated fractures δ(v) and (v) depend on fracture density and crack aspect ratio and are also related to Vp/VS and Vp of background rocks, respectively. Differing from δ(v) and (v), γ(v) is the parameter most related to crack density. It is insensitive to the saturated fluid content and crack aspect ratio. The P‐wave NMO velocities in horizontally layered media are a function of δ(v), and their properties are comparable with those of δ(v). Results from 3‐D finite‐difference modeling show that P‐wave azimuthal AVO variations do not necessarily correlate with the magnitude of fracture density. Our studies reveal that, in addition to Poisson's ratio, other elastic properties of background rocks have an effect on P‐wave azimuthal AVO variations. Varying the saturated fluid content of fractures can lead to azimuthal AVO variations and may greatly change azimuthal AVO responses. For a thin fractured reservoir, a tuning effect related to seismic wavelength and reservoir thickness can result in variations in AVO gradients and in azimuthal AVO variations. Results from instantaneous frequency and instantaneous bandwidth indicate that tuning can also lead to azimuthal variations in the rates of changes of the phase and amplitude of seismic waves. For very thin fractured reservoirs, the effect of tuning could become dominant. Our numerical results show that AVO gradients may be significantly distorted in the presence of overburden anisotropy, which suggests that the inversion of fracture parameters based on an individual AVO response would be biased unless this influence were corrected. Though P‐wave azimuthal AVO variations could be useful for fracture detection, the combination of other types of data is more beneficial than using P‐wave amplitude signatures alone, especially for the quantitative characterization of a fractured reservoir.


Geophysics ◽  
2000 ◽  
Vol 65 (6) ◽  
pp. 1803-1817 ◽  
Author(s):  
Andrey Bakulin ◽  
Vladimir Grechka ◽  
Ilya Tsvankin

Existing geophysical and geological data indicate that orthorhombic media with a horizontal symmetry plane should be rather common for naturally fractured reservoirs. Here, we consider two orthorhombic models: one that contains parallel vertical fractures embedded in a transversely isotropic background with a vertical symmetry axis (VTI medium) and the other formed by two orthogonal sets of rotationally invariant vertical fractures in a purely isotropic host rock. Using the linear‐slip theory, we obtain simple analytic expressions for the anisotropic coefficients of effective orthorhombic media. Under the assumptions of weak anisotropy of the background medium (for the first model) and small compliances of the fractures, all effective anisotropic parameters reduce to the sum of the background values and the parameters associated with each fracture set. For the model with a single fracture system, this result allows us to eliminate the influence of the VTI background by evaluating the differences between the anisotropic parameters defined in the vertical symmetry planes. Subsequently, the fracture weaknesses, which carry information about the density and content of the fracture network, can be estimated in the same way as for fracture‐induced transverse isotropy with a horizontal symmetry axis (HTI media) examined in our previous paper (part I). The parameter estimation procedure can be based on the azimuthally dependent reflection traveltimes and prestack amplitudes of P-waves alone if an estimate of the ratio of the P- and S-wave vertical velocities is available. It is beneficial, however, to combine P-wave data with the vertical traveltimes, NMO velocities, or AVO gradients of mode‐converted (PS) waves. In each vertical symmetry plane of the model with two orthogonal fracture sets, the anisotropic parameters are largely governed by the weaknesses of the fractures orthogonal to this plane. For weak anisotropy, the fracture sets are essentially decoupled, and their parameters can be estimated by means of two independently performed HTI inversions. The input data for this model must include the vertical velocities (or reflector depth) to resolve the anisotropic coefficients in each vertical symmetry plane rather than just their differences. We also discuss several criteria that can be used to distinguish between the models with one and two fracture sets. For example, the semimajor axis of the P-wave NMO ellipse and the polarization direction of the vertically traveling fast shear wave are always parallel to each other for a single system of fractures, but they may become orthogonal in the medium with two fracture sets.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1266-1276 ◽  
Author(s):  
Maria A. Pérez ◽  
Vladimir Grechka ◽  
Reinaldo J. Michelena

We combine various methods to estimate fracture orientation in a carbonate reservoir located in southwest Venezuela. The methods we apply include the 2-D rotation analysis of 2-D P-S data along three different azimuths, amplitude‐variation‐with‐offset (AVO) of 2-D P-wave data along the same three azimuths, normal‐moveout (NMO) analysis of the same 2-D data, and both 3-D azimuthal AVO and NMO analysis of 3-D P-wave data recorded in the same field. The results of all methods are compared against measures of fracture orientation obtained from Formation microScanner logs recorded at four different locations in the field, regional and local measures of maximum horizontal stress, and the alignment of the major faults that cross the field. P-S data yield fracture orientations that follow the regional trend of the maximum horizontal stress, and are consistent with fracture orientations measured in the wells around the carbonate reservoir. Azimuthal AVO analysis yields a similar regional trend as that obtained from the P-S data, but the resolution is lower. Local variations in fracture orientation derived from 3-D AVO show good correlation with local structural changes. In contrast, due to the influence of a variety of factors, including azimuthal anisotropy and lateral heterogeneity in the overburden, azimuthal NMO analysis over the 3-D P-wave data yields different orientations compared to those obtained by other methods. It is too early to say which particular method is more appropriate and reliable for fracture characterization. The answer will depend on factors that range from local geological conditions to additional costs for acquiring new information.


Sign in / Sign up

Export Citation Format

Share Document