Estimation of fracture parameters from reflection seismic data—Part II: Fractured models with orthorhombic symmetry

Geophysics ◽  
2000 ◽  
Vol 65 (6) ◽  
pp. 1803-1817 ◽  
Author(s):  
Andrey Bakulin ◽  
Vladimir Grechka ◽  
Ilya Tsvankin

Existing geophysical and geological data indicate that orthorhombic media with a horizontal symmetry plane should be rather common for naturally fractured reservoirs. Here, we consider two orthorhombic models: one that contains parallel vertical fractures embedded in a transversely isotropic background with a vertical symmetry axis (VTI medium) and the other formed by two orthogonal sets of rotationally invariant vertical fractures in a purely isotropic host rock. Using the linear‐slip theory, we obtain simple analytic expressions for the anisotropic coefficients of effective orthorhombic media. Under the assumptions of weak anisotropy of the background medium (for the first model) and small compliances of the fractures, all effective anisotropic parameters reduce to the sum of the background values and the parameters associated with each fracture set. For the model with a single fracture system, this result allows us to eliminate the influence of the VTI background by evaluating the differences between the anisotropic parameters defined in the vertical symmetry planes. Subsequently, the fracture weaknesses, which carry information about the density and content of the fracture network, can be estimated in the same way as for fracture‐induced transverse isotropy with a horizontal symmetry axis (HTI media) examined in our previous paper (part I). The parameter estimation procedure can be based on the azimuthally dependent reflection traveltimes and prestack amplitudes of P-waves alone if an estimate of the ratio of the P- and S-wave vertical velocities is available. It is beneficial, however, to combine P-wave data with the vertical traveltimes, NMO velocities, or AVO gradients of mode‐converted (PS) waves. In each vertical symmetry plane of the model with two orthogonal fracture sets, the anisotropic parameters are largely governed by the weaknesses of the fractures orthogonal to this plane. For weak anisotropy, the fracture sets are essentially decoupled, and their parameters can be estimated by means of two independently performed HTI inversions. The input data for this model must include the vertical velocities (or reflector depth) to resolve the anisotropic coefficients in each vertical symmetry plane rather than just their differences. We also discuss several criteria that can be used to distinguish between the models with one and two fracture sets. For example, the semimajor axis of the P-wave NMO ellipse and the polarization direction of the vertically traveling fast shear wave are always parallel to each other for a single system of fractures, but they may become orthogonal in the medium with two fracture sets.

Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 699-707 ◽  
Author(s):  
Andrés Pech ◽  
Ilya Tsvankin

Interpretation and inversion of azimuthally varying nonhyperbolic reflection moveout requires accounting for both velocity anisotropy and subsurface structure. Here, our previously derived exact expression for the quartic moveout coefficient A4 is applied to P‐wave reflections from a dipping interface overlaid by a medium of orthorhombic symmetry. The weak‐anisotropy approximaton for the coefficient A4 in a homogeneous orthorhombic layer is controlled by the anellipticity parameters η(1), η(2), and η(3), which are responsible for time processing of P‐wave data. If the dip plane of the reflector coincides with the vertical symmetry plane [x1, x3], A4 on the dip line is proportional to the in‐plane anellipticity parameter η(2) and always changes sign for a dip of 30○. The quartic coefficient on the strike line is a function of all three η–parameters, but for mild dips it is mostly governed by η(1)—the parameter defined in the incidence plane [x2, x3]. Whereas the magnitude of the dip line A4 typically becomes small for dips exceeding 45○, the nonhyperbolic moveout on the strike line may remain significant even for subvertical reflectors. The character of the azimuthal variation of A4 depends on reflector dip and is quite sensitive to the signs and relative magnitudes of η(1), η(2), and η(3). The analytic results and numerical modeling show that the azimuthal pattern of the quartic coefficient can contain multiple lobes, with one or two azimuths of vanishing A4 between the dip and strike directions. The strong influence of the anellipticity parameters on the azimuthally varying coefficient A4 suggests that nonhyperbolic moveout recorded in wide‐azimuth surveys can help to constrain the anisotropic velocity field. Since for typical orthorhombic models that describe naturally fractured reservoirs the parameters η(1,2,3) are closely related to the fracture density and infill, the results of azimuthal nonhyperbolic moveout analysis can also be used in reservoir characterization.


Geophysics ◽  
1998 ◽  
Vol 63 (3) ◽  
pp. 1079-1092 ◽  
Author(s):  
Vladimir Grechka ◽  
Ilya Tsvankin

We present a new equation for normal‐moveout (NMO) velocity that describes azimuthally dependent reflection traveltimes of pure modes from both horizontal and dipping reflectors in arbitrary anisotropic inhomogeneous media. With the exception of anomalous areas such as those where common‐midpoint (CMP) reflection time decreases with offset, the azimuthal variation of NMO velocity represents an ellipse in the horizontal plane, with the orientation of the axes determined by the properties of the medium and the direction of the reflector normal. In general, a minimum of three azimuthal measurements is necessary to reconstruct the best‐fit ellipse and obtain NMO velocity in all azimuthal directions. This result provides a simple way to correct for the azimuthal variation in stacking velocity often observed in 3-D surveys. Even more importantly, analytic expressions for the parameters of the NMO ellipse can be used in the inversion of moveout data for the anisotropic coefficients of the medium. For homogeneous transversely isotropic media with a vertical axis of symmetry (VTI media), our equation for azimuthally dependent NMO velocity from dipping reflectors becomes a relatively simple function of phase velocity and its derivatives. We show that the zero‐dip NMO velocity Vnmo(0) and the anisotropic coefficient η are sufficient to describe the P-wave NMO velocity for any orientation of the CMP line with respect to the dip plane of the reflector. Using our formalism, Vnmo(0) and η (the only parameters needed for time processing) can be found from the dip‐dependent NMO velocity at any azimuth or, alternatively, from the azimuthally dependent NMO for a single dipping reflector. We also apply this theory to more complicated azimuthally anisotropic models with the orthorhombic symmetry used to describe fractured reservoirs. For reflections from horizontal interfaces in orthorhombic media, the axes of the normal moveout ellipse are aligned with the vertical symmetry planes. Therefore, azimuthal P-wave moveout measurements can be inverted for the orientation of the symmetry planes (typically determined by the fracture direction) and the NMO velocities within them. If the vertical velocity is known, symmetry‐plane NMO velocities make it possible to estimate two anisotropic parameters equivalent to Thomsen’s coefficient δ for transversely isotropic media.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. T51-T62 ◽  
Author(s):  
Qi Hao ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1600-1610 ◽  
Author(s):  
Andres Pech ◽  
Ilya Tsvankin ◽  
Vladimir Grechka

Nonhyperbolic (long‐spread) moveout provides essential information for a number of seismic inversion/processing applications, particularly for parameter estimation in anisotropic media. Here, we present an analytic expression for the quartic moveout coefficient A4 that controls the magnitude of nonhyperbolic moveout of pure (nonconverted) modes. Our result takes into account reflection‐point dispersal on irregular interfaces and is valid for arbitrarily anisotropic, heterogeneous media. All quantities needed to compute A4 can be evaluated during the tracing of the zero‐offset ray, so long‐spread moveout can be modeled without time‐consuming multioffset, multiazimuth ray tracing. The general equation for the quartic coefficient is then used to study azimuthally varying nonhyperbolic moveout of P‐waves in a dipping transversely isotropic (TI) layer with an arbitrary tilt ν of the symmetry axis. Assuming that the symmetry axis is confined to the dip plane, we employed the weak‐anisotropy approximation to analyze the dependence of A4 on the anisotropic parameters. The linearized expression for A4 is proportional to the anellipticity coefficient η ≈ ε − δ and does not depend on the individual values of the Thomsen parameters. Typically, the magnitude of nonhyperbolic moveout in tilted TI media above a dipping reflector is highest near the reflector strike, whereas deviations from hyperbolic moveout on the dip line are substantial only for mild dips. The azimuthal variation of the quartic coefficient is governed by the tilt ν and reflector dip φ and has a much more complicated character than the NMO–velocity ellipse. For example, if the symmetry axis is vertical (VTI media, ν = 0) and the dip φ < 30°, A4 goes to zero on two lines with different azimuths where it changes sign. If the symmetry axis is orthogonal to the reflector (this model is typical for thrust‐and‐fold belts), the strike‐line quartic coefficient is defined by the well‐known expression for a horizontal VTI layer (i.e., it is independent of dip), while the dip‐line A4 is proportional to cos4 φ and rapidly decreases with dip. The high sensitivity of the quartic moveout coefficient to the parameter η and the tilt of the symmetry axis can be exploited in the inversion of wide‐azimuth, long‐spread P‐wave data for the parameters of TI media.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. C143-C157 ◽  
Author(s):  
Song Jin ◽  
Alexey Stovas

Seismic wave reflection and transmission (R/T) responses characterize the subsurface local property, and the widely spread anisotropy has considerable influences even at small incident angles. We have considered layered transversely isotropic media with horizontal symmetry axes (HTI), and the symmetry axes were not restricted to be aligned. With the assumption of weak contrast across the interface, linear approximations for R/T coefficients normalized by vertical energy flux are derived based on a simple layered HTI model. We also obtain the approximation with the isotropic background medium under an additional weak anisotropy assumption. Numerical tests illustrate the good accuracy of the approximations compared with the exact results.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1305-1315 ◽  
Author(s):  
Hongbo Zhou ◽  
George A. McMechan

An analytical formula for geometrical spreading is derived for a horizontally layered transversely isotropic medium with a vertical symmetry axis (VTI). With this expression, geometrical spreading can be determined using only the anisotropy parameters in the first layer, the traveltime derivatives, and the source‐receiver offset. Explicit, numerically feasible expressions for geometrical spreading are obtained for special cases of transverse isotropy (weak anisotropy and elliptic anisotropy). Geometrical spreading can be calculated for transversly isotropic (TI) media by using picked traveltimes of primary nonhyperbolic P-wave reflections without having to know the actual parameters in the deeper subsurface; no ray tracing is needed. Synthetic examples verify the algorithm and show that it is numerically feasible for calculation of geometrical spreading. For media with a few (4–5) layers, relative errors in the computed geometrical spreading remain less than 0.5% for offset/depth ratios less than 1.0. Errors that change with offset are attributed to inaccuracy in the expression used for nonhyberbolic moveout. Geometrical spreading is most sensitive to errors in NMO velocity, followed by errors in zero‐offset reflection time, followed by errors in anisotropy of the surface layer. New relations between group and phase velocities and between group and phase angles are shown in appendices.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1613-1621 ◽  
Author(s):  
Richard L. Gibson ◽  
Stephen Theophanis ◽  
M. Nafi Toksöz

Fractured reservoirs are an important target for exploration and production geophysics, and the azimuthal anisotropy often associated with these reservoirs can strongly influence seismic wave propagation. We created a physical model of a fractured reservoir to simulate some of these propagation effects. The reservoir is represented by a phenolite disk that is thin with respect to the elastic wavelengths in the experiment, creating model dimensions that are representative of realistic reservoirs. Phenolite is strongly anisotropic with orthorhombic symmetry, which suggests that azimuthal amplitude versus offset (AVO) effects should be obvious in data. We acquired both SH- and P-wave data in common‐offset gathers with a near offset and a far offset and found that although the SH-wave data show clear azimuthal variations in AVO, the P-wave signals show no apparent changes with azimuth. We then applied numerical modeling to analyze the data. Because ray methods cannot model diffractions from the disk edge, we first used a ray‐Born technique to simulate variations in waveforms associated with such scattering. The synthetic seismograms reproduced variations in the SH-wave waveforms accurately, though the amplitude contrast between acquisition azimuths was overestimated. Assuming a laterally homogeneous model, we then applied ray methods to simulate tuning effects in SH- and P-wave data and confirmed that in spite of the large contrasts in elastic properties, the tuning of the P-wave reflections from the thin disk changed so there was negligible contrast in AVO with azimuth. Models of field scale reservoirs showed that the same effects could be expected for field applications.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. D41-D50 ◽  
Author(s):  
Martin Landrø ◽  
Ilya Tsvankin

Existing anisotropic parameter-estimation algorithms that operate with long-offset data are based on the inversion of either nonhyperbolic moveout or wide-angle amplitude-variation-with-offset (AVO) response. We show that valuable information about anisotropic reservoirs can also be obtained from the critical angle of reflected waves. To explain the behavior of the critical angle, we develop weak-anisotropy approximations for vertical transverse isotropy and then use Tsvankin’s notation to extend them to azimuthally anisotropic models of orthorhombic symmetry. The P-wave critical-angle reflection in orthorhombic media is particularly sensitive to the parameters [Formula: see text] and [Formula: see text] responsible for the symmetry-plane horizontal velocity in the high-velocity layer. The azimuthal variation of the critical angle for typical orthorhombic models can reach [Formula: see text], which translates into substantial changes in the critical offset of the reflected P-wave. The main diagnostic features of the critical-angle reflection employed in our method include the rapid amplitude increase at the critical angle and the subsequent separation of the head wave. Analysis of exact synthetic seismograms, generated with the reflectivity method, confirms that the azimuthal variation of the critical offset is detectable on wide-azimuth, long-spread data and can be qualitatively described by our linearized equations. Estimation of the critical offset from the amplitude curve of the reflected wave, however, is not straightforward. Additional complications may be caused by the overburden noise train and by the influence of errors in the overburden velocity model on the computation of the critical angle. Still, critical-angle reflectometry should help to constrain the dominant fracture directions and can be combined with other methods to reduce the uncertainty in the estimated anisotropy parameters.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1261-1271 ◽  
Author(s):  
Andrey A. Ortega ◽  
George A. McMechan

Dynamic ray shooting with interpolation is an economical way of computing approximate Green’s functions in 3-D heterogeneous anisotropic media. The amplitudes, traveltimes, and polarizations of the reflected rays arriving at the surface are interpolated to synthesize three‐component seismograms at the desired recording points. The algorithm is applied to investigate kinematic quasi-P-wave propagation and converted quasi-P-S-wave splitting variations produced in reflections from the bottom of a layer containing two sets of intersecting dry vertical fractures as a function of the angle between the fracture sets and of the intensity of fracturing. An analytical expression is derived for the stiffness constant C16 that extends Hudson’s second‐order scattering theory to include tetragonal-2 symmetry systems. At any offset, the amount of splitting in nonorthogonal (orthorhombic symmetry) intersecting fracture sets is larger than in orthogonal (tetragonal-1 symmetry) systems, and it increases nonlinearly as a function of the intensity of fracturing as offset increases. Such effects should be visible in field data, provided that the dominant frequency is sufficiently high and the offset is sufficiently large. The amount of shear‐wave splitting at vertical incidence increases nonlinearly as a function of the intensity of fracturing and increases nonlinearly from zero in the transition from tetragonal-1 anisotropy through orthorhombic to horizontal transverse isotropy; the latter corresponds to the two crack systems degenerating to one. The zero shear‐wave splitting corresponds to a singularity, at which the vertical velocities of the two quasi‐shear waves converge to a single value that is both predicted theoretically and illustrated numerically. For the particular case of vertical fractures, there is no P-to-S conversion of vertically propagating (zero‐offset) waves. If the fractures are not vertical, the normal incidence P-to-S reflection coefficient is not zero and thus is a potential diagnostic of fracture orientation.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. C113-C126 ◽  
Author(s):  
Yuriy Ivanov ◽  
Alexey Stovas

A stack of horizontal homogeneous elastic arbitrary anisotropic layers in welded contact in the long-wavelength limit is equivalent to an elastic anisotropic homogeneous medium. Such a medium is characterized by an effective average description adhering to previously derived closed-form formalism. We have used this formalism to study three different inhomogeneous orthorhombic (ORT) models that could represent real geologic scenarios. We have determined that a stack of thin orthorhombic layers with arbitrary azimuths of vertical symmetry planes can be approximated by an effective orthorhombic medium. The most suitable approach for this is to minimize the misfit between the effective anisotropic medium, monoclinic in that case, and the desirable orthorhombic medium. The second model is an interbedding of VTI (transversely isotropic with a vertical symmetry axis) layers with the same layers containing vertical fractures (shales are intrinsically anisotropic and often fractured). We have derived a weak-anisotropy approximation for important P-wave processing parameters as a function of the relative amount of the fractured lithology. To accurately characterize fractures, inversion for the fracture parameters should use a priori information on the relative amount of a fractured medium. However, we have determined that the cracks’ fluid saturation can be estimated without prior knowledge of the relative amount of the fractured layer. We have used field well-log data to demonstrate how fractures can be included in the interval of interest during upscaling. Finally, the third model that we have considered is a useful representation of tilted orthorhombic medium in the case of two-way propagation of seismic waves through it. We have derived a weak anisotropy approximation for traveltime parameters of the reflected P-wave that propagates through a stack of thin beds of tilted orthorhombic symmetry. The tilt of symmetry planes in an orthorhombic medium significantly affects the kinematics of the reflected P-wave and should be properly accounted for to avoid mispositioning of geologic structures in seismic imaging.


Sign in / Sign up

Export Citation Format

Share Document