Uncertainty in determining interval velocities from surface reflection seismic data

Geophysics ◽  
2002 ◽  
Vol 67 (3) ◽  
pp. 952-963 ◽  
Author(s):  
Dan D. Kosloff ◽  
Yonadav Sudman

The ability of reflection seismic data to uniquely determine the subsurface velocity has been uncertain. This paper uses a tomographic approach to study the resolution of typical seismic survey configurations. The analysis is first carried out in the spatial Fourier domain for the case of a single horizontal reflector. It is found that for a ratio of maximum offset to layer depth of one, the lateral resolution is very low for velocity and interface depth variations of wavelengths of approximately two‐and‐a‐half times the layer thickness. The resolution improves with an increase in the ratio of maximum offset to layer depth. The results of the analysis in the Fourier domain are confirmed by results from a least‐squares tomographic algorithm. It is found that regularization of the tomography by adding damping terms suppresses the spurious oscillations resulting from the areas of low resolution at the expense of loss of resolution at the shorter spatial wavelengths. Analysis of the single layer response for 3‐D survey geometry shows that a 3‐D acquisition with multiazimuthal coverage has the potential to significantly improve velocity determination.

Geophysics ◽  
2001 ◽  
Vol 66 (2) ◽  
pp. 582-597 ◽  
Author(s):  
Donald F. Winterstein ◽  
Gopa S. De ◽  
Mark A. Meadows

Since 1986, when industry scientists first publicly showed data supporting the presence of azimuthal anisotropy in sedimentary rock, we have studied vertical shear‐wave (S-wave) birefringence in 23 different wells in western North America. The data were from nine‐component vertical seismic profiles (VSPs) supplemented in recent years with data from wireline crossed‐dipole logs. This paper summarizes our results, including birefringence results in tabular form for 54 depth intervals in 19 of those 23 wells. In the Appendix we present our conclusions about how to record VSP data optimally for study of vertical birefringence. We arrived at four principal conclusions about vertical S-wave birefringence. First, birefringence was common but not universal. Second, birefringence ranged from 0–21%, but values larger than 4% occurred only in shallow formations (<1200 m) within 40 km of California’s San Andreas fault. Third, at large scales birefringence tended to be blocky. That is, both the birefringence magnitude and the S-wave polarization azimuth were often consistent over depth intervals of several tens to hundreds of meters but then changed abruptly, sometimes by large amounts. Birefringence in some instances diminished with depth and in others increased with depth, but in almost every case a layer near the surface was more birefringent than the layer immediately below it. Fourth, observed birefringence patterns generally do not encourage use of multicomponent surface reflection seismic data for finding fractured hydrocarbon reservoirs, but they do encourage use of crossed‐dipole logs to examine them. That is, most reservoirs were birefringent, but none we studied showed increased birefringence confined to the reservoir.


2009 ◽  
Vol 49 (2) ◽  
pp. 587
Author(s):  
Chris Nicholson ◽  
Edward Bowen ◽  
George Bernardel ◽  
Barry Bradshaw ◽  
Irina Borissova ◽  
...  

Under the Australian Government’s Energy Security Program, Geoscience Australia is conducting a seismic survey and a marine reconnaissance survey to acquire new geophysical data and obtain geological samples in frontier basins along the southwest Australian continental margin. Specific areas of interest include the Mentelle Basin, northern Perth Basin, Wallaby Plateau and the southern Carnarvon Basin. The regional seismic survey will acquire 8,000–10,000 km of industry-standard 2D reflection seismic data using an 8 km solid streamer and a 12 second record length, together with gravity and magnetic data. These new geophysical datasets, together with over 7,000 km of reprocessed open-file seismic, will facilitate more detailed mapping of the regional geology, determination of total sediment thickness, interpretation of the nature and thickness of crust beneath the major depocentres, modelling of the tectonic evolution and an assessment of the petroleum prospectivity of frontier basins along the southwest margin. The overall scientific aim of the marine survey is to collect swath bathymetry, potential field data, geological samples and biophysical data. Together with the new seismic data, samples recovered from frontier basins will assist in understanding the geological setting and petroleum prospectivity of these little known areas. Preliminary results from both surveys will be presented for the first time at this conference.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 423-430 ◽  
Author(s):  
Richard D. Miller ◽  
Neil L. Anderson ◽  
Howard R. Feldman ◽  
Evan K. Franseen

A 400-m long, 12‐fold high‐resolution common depth point (CDP) reflection seismic profile was acquired across shallow converging Pennsylvanian strata in the Independence area of southeastern Kansas. One of the principal objectives was to determine practical vertical resolution limits in an excellent shallow seismic‐data area with borehole control. The dominant frequency of the CDP stacked data is in excess of 150 Hz based on peak‐to‐peak measurements. Interference phenomena observed on stacked seismic data incorporated with models derived from log and drill‐hole information suggest a practical vertical resolution limit of about 7 m, or one‐third of the dominant wavelength. This practical resolution is slightly less than the predicted (theoretical) resolution limit of 5 m based on the generally accepted one‐quarter wavelength axiom. These data suggest conventional rules of thumb describing resolution potential are not accurate when reflectors on shallow, narrow bandwidth data converge rapidly across horizontal distances less than the Fresnel Zone.


2017 ◽  
Vol 17 (1) ◽  
pp. 25
Author(s):  
Fitri Rizqi Azizah ◽  
Puguh Hiskiawan ◽  
Sri Hartanto

Oil and natural gas as a fossil fuel that is essential for human civilization, and included in nonrenewable energy, making this energy source is not easy for updated availability. So that it is necessary for exploration and exploitation reliable implementation. Seismic exploration becomes the method most widely applied in the oil, in particular reflection seismic exploration. Data wells (depth domain) and seismic data (time domain) of reflection seismic survey provides information wellbore within the timescale. As for the good interpretation needed information about the state of the earth and is able to accurately describe the actual situation (scale depth). Conversion time domain into the depth domain into things that need to be done in generating qualified exploration map. Method of time-depth curve to be the method most preferred by the geophysical interpreter, in addition to a fairly short turnaround times, also do not require a large budget. Through data information check-shot consisting of the well data and seismic data, which is then exchanged plotted, forming a curve time-depth curve, has been able to produce a map domain depth fairly reliable based on the validation value obtained in the range of 54 - 176m difference compared to the time domain maps previously generated.Keywords: Energy nonrenewable, survei seismik, peta domain waktu, peta domain kedalaman, time-depth curve


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. S219-S234 ◽  
Author(s):  
Thomas Røste ◽  
Alexey Stovas ◽  
Martin Landrø

In some hydrocarbon reservoirs, severe compaction of the reservoir rocks is observed. This compaction is caused by production and is often associated with stretching and arching of the overburden rocks. Time-lapse seismic data can be used to monitor these processes. Since compaction and stretching cause changes in layer thickness as well as seismic velocities, it is crucial to develop methods to distinguish between the two effects. We introduce a new method based on detailed analysis of time-lapse prestack seismic data. The equations are derived assuming that the entire model consists of only one single layer with no vertical velocity variations. The method incorporates lateral variations in (relative) velocity changes by utilizing zero-offset and offset-dependent time shifts. To test the method, we design a 2D synthetic model that undergoes severe reservoir compaction as well as stretching of the overburden rocks. Finally, we utilize the method to analyze a real 2D prestack time-lapse seismic line from the Valhall field, acquired in 1992 and 2002. For a horizon at a depth of around [Formula: see text], which is near the top reservoir horizon, a subsidence of [Formula: see text] and a velocity decrease of [Formula: see text] for the sequence from the sea surface to the top reservoir horizon are estimated. By assuming that the base of the reservoir remains constant in depth, a reservoir compaction of 3.6% (corresponding to a subsidence of the top reservoir horizon of [Formula: see text]) and a corresponding reservoir velocity increase of 6.7% (corresponding to a velocity increase of [Formula: see text]) are estimated.


2015 ◽  
Vol 656 ◽  
pp. 154-174 ◽  
Author(s):  
Y. Biari ◽  
F. Klingelhoefer ◽  
M. Sahabi ◽  
D. Aslanian ◽  
P. Schnurle ◽  
...  

2015 ◽  
Vol 34 (11) ◽  
pp. 1382-1385 ◽  
Author(s):  
W. Frei ◽  
R. Bauer ◽  
Ph. Corboz ◽  
D. Martin

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. A25-A29 ◽  
Author(s):  
Kyle T. Spikes ◽  
Nicola Tisato ◽  
Thomas E. Hess ◽  
John W. Holt

The rapid and nonintrusive deployment of seismic sensors for near-surface geophysical surveys is of interest to make data acquisition efficient and to operate in a wide variety of environmental and surface-terrain conditions. We have developed and compared near-surface data acquired using a traditional vertical geophone array with data acquired using three different fiber optic cables operating in a distributed acoustic sensing (DAS) configuration. The DAS cables included a helically wrapped fiber, a nearly bare single-strand fiber, and an armored single-strand fiber. These three cables are draped on the ground alongside the geophones. Equivalent processing on colocated shot gathers resulted in a high level of similarity, in particular for reflection energy acquired through geophones and the helically wrapped cable. The single-strand fibers indicate much less similarity. Frequency content, however, differs in the raw and processed gathers from the geophones and the fiber optic cables. Nonetheless, results demonstrate that DAS technology can be used successfully to acquire near-surface reflection seismic data by deploying the cables on the surface. Potential applications for this technology include rapid deployment of active and/or passive arrays for near-surface geophysical characterization for various applications at different scales.


1992 ◽  
Vol 29 (9) ◽  
pp. 2022-2037 ◽  
Author(s):  
J. G. Thurlow ◽  
C. P. Spencer ◽  
D. E. Boerner ◽  
L. E. Reed ◽  
J. A. Wright

Sixteen kilometres of high resolution Vibroseis reflection seismic data have been acquired in the vicinity of the former Buchans mine. Direct identification of the cause of several reflectors is possible because the geology is tightly constrained by underground workings and drill holes both of which locally exceed 1 km depth. Many of the mine-scale thrust faults are imaged as reflectors but conformable and intrusive contacts generally responded poorly. A significant shallow-dipping thrust, the Powerline Fault, is recognized below the orebodies and traced throughout the Buchans area, primarily as a result of the seismic survey. It truncates ore stratigraphy and forms the floor thrust of a large duplex–stack, which hosts all the orebodies. Its presence has negative implications for exploration in the immediate mine area. Several lines of evidence suggest that this fault has a significant component of out-of-sequence movement. A strong reflector 4.5 km below Buchans is correlated with the surface expression of the Victoria River Delta Fault, an important regional structure, newly recognized southeast of Red Indian Lake. This shallow, north-dipping sole thrust forms the structural base of the Buchans Group and brings it above a younger fossiliferous Llanvirn volcanic sequence. This fault is not itself the Red Indian Line but is one of a series of faults that collectively effect substantial geological contrasts in central Newfoundland. The seismic survey was a cost-efficient means of gaining knowledge of Buchans structure, which might otherwise have been acquired at much higher cost and over a longer period of time.


Sign in / Sign up

Export Citation Format

Share Document